834 resultados para multi-disciplinary design optimisation
Resumo:
This paper investigates the field programmable gate array (FPGA) approach for multi-objective and multi-disciplinary design optimisation (MDO) problems. One class of optimisation method that has been well-studied and established for large and complex problems, such as those inherited in MDO, is multi-objective evolutionary algorithms (MOEAs). The MOEA, nondominated sorting genetic algorithm II (NSGA-II), is hardware implemented on an FPGA chip. The NSGA-II on FPGA application to multi-objective test problem suites has verified the designed implementation effectiveness. Results show that NSGA-II on FPGA is three orders of magnitude better than the PC based counterpart.
Resumo:
There are many applications in aeronautics where there exist strong couplings between disciplines. One practical example is within the context of Unmanned Aerial Vehicle(UAV) automation where there exists strong coupling between operation constraints, aerodynamics, vehicle dynamics, mission and path planning. UAV path planning can be done either online or offline. The current state of path planning optimisation online UAVs with high performance computation is not at the same level as its ground-based offline optimizer's counterpart, this is mainly due to the volume, power and weight limitations on the UAV; some small UAVs do not have the computational power needed for some optimisation and path planning task. In this paper, we describe an optimisation method which can be applied to Multi-disciplinary Design Optimisation problems and UAV path planning problems. Hardware-based design optimisation techniques are used. The power and physical limitations of UAV, which may not be a problem in PC-based solutions, can be approached by utilizing a Field Programmable Gate Array (FPGA) as an algorithm accelerator. The inevitable latency produced by the iterative process of an Evolutionary Algorithm (EA) is concealed by exploiting the parallelism component within the dataflow paradigm of the EA on an FPGA architecture. Results compare software PC-based solutions and the hardware-based solutions for benchmark mathematical problems as well as a simple real world engineering problem. Results also indicate the practicality of the method which can be used for more complex single and multi objective coupled problems in aeronautical applications.
Resumo:
A novel Glass Fibre Reinforced Polymer (GFRP) sandwich panel was developed by an Australian manufacturer for civil engineering applications. This research is motivated by the new applications of GFRP sandwich structures in civil engineering such as slab, beam, girder and sleeper. An optimisation methodology is developed in this work to enhance the design of GFRP sandwich beams. The design of single and glue laminated GFRP sandwich beam were conducted by using numerical optimisation. The numerical multi-objective optimisation considered a design two objectives simultaneously. These objectives are cost and mass. The numerical optimisation uses the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA) and Finite Element (FE) method. Trade-offs between objectives was found during the optimisation process. Multi-objective optimisation shows a core to skin mass ratio equal to 3.68 for the single sandwich beam cross section optimisation and it showed that the optimum core to skin thickness ratio is 11.0.
Resumo:
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems.
Resumo:
This report describes a methodology for the design and coupling of a proton exchange membrane (PEM) Fuel Cell to an Unmanned Aerial Vehicle (UAV). The report summarizes existing work in the field, the type of UAV and the mission requirements, design the fuel cell system, simulation environment, and compares endurance and range to when the aircraft is fitted with a conventional internal combustion engine (ICE).
Resumo:
This thesis investigates the Value Management processes used by construction project clients that effects project team involvement in VM workshops during the design stage of the projects. It is based on five case studies of the Malaysian international airport construction project packages. The focus of the research is on how issues related to infrastructure design that can improve construction processes on-site are being identified, analysed and resolved through multi-disciplinary team participation. The degrees of interaction, diversity of visualisation aids, certain cultural dimensions and the system thinking approach are found to have significant influence in maximizing participation among project team members during the entire VM workshop process.
Resumo:
One of the main aims in artificial intelligent system is to develop robust and efficient optimisation methods for Multi-Objective (MO) and Multidisciplinary Design (MDO) design problems. The paper investigates two different optimisation techniques for multi-objective design optimisation problems. The first optimisation method is a Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The second method combines the concepts of Nash-equilibrium and Pareto optimality with Multi-Objective Evolutionary Algorithms (MOEAs) which is denoted as Hybrid-Game. Numerical results from the two approaches are compared in terms of the quality of model and computational expense. The benefit of using the distributed hybrid game methodology for multi-objective design problems is demonstrated.
Resumo:
As global industries change and technology advances, traditional education systems may no longer be able to supply companies with graduates possessing an appropriate mix of skills and experience. The recent increased interest in Design Thinking as an approach to innovation has resulted in its adoption by non-design trained professionals. This necessitates a new method of teaching Design Thinking related skills and processes. This research investigates what (content) and how (assessment and learning modes) Design Thinking is being taught from fifty-one (51) selected courses across twenty-eight (28) international universities. Their approaches differ, with some universities specifically investing in design schools and programs, while others embed Design Thinking holistically throughout the university. Business, engineering and design schools are all expanding their efforts to teach students how to innovate, often through multi-disciplinary classes. This paper presents ‘The Educational Design Ladder’ a resource model, which suggests a process for the organisation and structuring of units for a multi-disciplinary Design Thinking program. The intention is to provide 21st century graduates with the right combination of skills and experience to solve workplace design problems regardless of their core discipline.
Resumo:
Background Diagnosis and treatment of cancer can contribute to psychological distress and anxiety amongst patients. Evidence indicates that information giving can be beneficial in reducing patient anxiety, so oncology specific information may have a major impact on this patient group. This study investigates the effects of an orientation program on levels of anxiety and self-efficacy amongst newly registered cancer patients who are about to undergo chemotherapy and/or radiation therapy in the cancer care centre of a large tertiary Australian hospital. Methods The concept of interventions for orienting new cancer patients needs revisiting due to the dynamic health care system. Historically, most orientation programs at this cancer centre were conducted by one nurse. A randomised controlled trial has been designed to test the effectiveness of an orientation program with bundled interventions; a face-to-face program which includes introduction to the hospital facilities, introduction to the multi-disciplinary team and an overview of treatment side effects and self care strategies. The aim is to orientate patients to the cancer centre and to meet the health care team. We hypothesize that patients who receive this orientation will experience lower levels of anxiety and distress, and a higher level of self-efficacy. Discussion An orientation program is a common health care service provided by cancer care centres for new cancer patients. Such programs aim to give information to patients at the beginning of their encounter at a cancer care centre. It is clear in the literature that interventions that aim to improve self-efficacy in patients may demonstrate potential improvement in health outcomes. Yet, evidence on the effects of orientation programs for cancer patients on self-efficacy remains scarce, particularly with respect to the use of multidisciplinary team members. This paper presents the design of a randomised controlled trial that will evaluate the effects and feasibility of a multidisciplinary orientation program for new cancer patients.
Resumo:
Over recent years, Unmanned Air Vehicles or UAVs have become a powerful tool for reconnaissance and surveillance tasks. These vehicles are now available in a broad size and capability range and are intended to fly in regions where the presence of onboard human pilots is either too risky or unnecessary. This paper describes the formulation and application of a design framework that supports the complex task of multidisciplinary design optimisation of UAVs systems via evolutionary computation. The framework includes a Graphical User Interface (GUI), a robust Evolutionary Algorithm optimiser named HAPEA, several design modules, mesh generators and post-processing capabilities in an integrated platform. These population –based algorithms such as EAs are good for cases problems where the search space can be multi-modal, non-convex or discontinuous, with multiple local minima and with noise, and also problems where we look for multiple solutions via Game Theory, namely a Nash equilibrium point or a Pareto set of non-dominated solutions. The application of the methodology is illustrated on conceptual and detailed multi-criteria and multidisciplinary shape design problems. Results indicate the practicality and robustness of the framework to find optimal shapes and trade—offs between the disciplinary analyses and to produce a set of non dominated solutions of an optimal Pareto front to the designer.
Resumo:
Multi-disciplinary approaches to complex problems are becoming more common – they enable criteria manifested in distinct (and potentially conflicting) domains to be jointly balanced and satisfied. In this paper we present airport terminals as a case study which requires multi-disciplinary knowledge in order to balance conflicting security, economic and passenger-driven needs and correspondingly enhance the design, management and operation of airport terminals. The need for a truly multi-disciplinary scientific approach which integrates information, process, people, technology and space domains is highlighted through a brief discussion of two challenges currently faced by airport operators. The paper outlines the approach taken by this project, detailing the aims and objectives of each of seven diverse research programs.
Resumo:
There is worldwide interest in reducing aircraft emissions. The difficulty of reducing emissions including water vapour, carbon dioxide (CO2) and oxides of nitrogen (NOx) is mainly due from the fact that a commercial aircraft is usually designed for a particular optimal cruise altitude but may be requested or required to operate and deviate at different altitude and speeds to archive a desired or commanded flight plan, resulting in increased emissions. This is a multi- disciplinary problem with multiple trade-offs such as optimising engine efficiency, minimising fuel burnt, minimise emissions while maintaining aircraft separation and air safety. This project presents the coupling of an advanced optimisation technique with mathematical models and algorithms for aircraft emission reduction through flight optimisation. Numerical results show that the method is able to capture a set of useful trade-offs between aircraft range and NOx, and mission fuel consumption and NOx. In addition, alternative cruise operating conditions including Mach and altitude that produce minimum NOx and CO2 (minimum mission fuel weight) are suggested.
Resumo:
This paper investigates the High Lift System (HLS) application of complex aerodynamic design problem using Particle Swarm Optimisation (PSO) coupled to Game strategies. Two types of optimization methods are used; the first method is a standard PSO based on Pareto dominance and the second method hybridises PSO with a well-known Nash Game strategies named Hybrid-PSO. These optimization techniques are coupled to a pre/post processor GiD providing unstructured meshes during the optimisation procedure and a transonic analysis software PUMI. The computational efficiency and quality design obtained by PSO and Hybrid-PSO are compared. The numerical results for the multi-objective HLS design optimisation clearly shows the benefits of hybridising a PSO with the Nash game and makes promising the above methodology for solving other more complex multi-physics optimisation problems in Aeronautics.