112 resultados para motorway
Resumo:
Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such microcalibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, lane distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management.
Resumo:
Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such micro-calibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, land distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management.
Traffic queue estimation for metered motorway on-ramps through use of loop detector time occupancies
Resumo:
The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is a vital input for dynamic queue management on metered on-ramps. Accurate and reliable queue information enables the management of on-ramp queue in an adaptive manner to the actual traffic queue size and thus minimises the adverse impacts of queue flush while increasing the benefit of ramp metering. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.
Resumo:
The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is the most vital input for a dynamic queue management that can treat long queues on metered on-ramps more sophistically. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in the congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.
Resumo:
Motorway off-ramps are a significant source of traffic congestion and collisions. Heavy diverging traffic to off-ramps slows down the mainline traffic speed. When the off-ramp queue spillbacks onto the mainline, it leads to a major breakdown of the motorway capacity and a significant threat to the traffic safety. This paper proposes using Variable Speed Limits (VSL) for protection of the motorway off-ramp queue and thus to promote safety in congested diverging areas. To support timely activation of VSL in advance of queue spillover, a proactive control strategy is proposed based on a real-time off-ramp queue estimation and prediction. This process determines the estimated queue size in the near-term future, on which the decision to change speed limits is made. VSL can effectively slow down traffic as it is mandatory that drivers follow the changed speed limits. A collateral benefit of VSL is its potential effect on drivers making them more attentive to the surrounding traffic conditions, and prepared for a sudden braking of the leading car. This paper analyses and quantifies these impacts and potential benefits of VSL on traffic safety and efficiency using the microsimulation approach.
Resumo:
This thesis highlights the limitations of the existing car following models to emulate driver behaviour for safety study purposes. It also compares the capabilities of the mainstream car following models emulating driver behaviour precise parameters such as headways and Time to Collisions. The comparison evaluates the robustness of each car following model for safety metric reproductions. A new car following model, based on the personal space concept and fish school model is proposed to simulate more precise traffic metrics. This new model is capable of reflecting changes in the headway distribution after imposing the speed limit form VSL systems. This research facilitates assessing Intelligent Transportation Systems on motorways, using microscopic simulation.
Resumo:
Travel time estimation and prediction on motorways has long been a topic of research. Prediction modeling generally assumes that the estimation is perfect. No matter how good is the prediction modeling- the errors in estimation can significantly deteriorate the accuracy and reliability of the prediction. Models have been proposed to estimate travel time from loop detector data. Generally, detectors are closely spaced (say 500m) and travel time can be estimated accurately. However, detectors are not always perfect, and even during normal running conditions few detectors malfunction, resulting in increase in the spacing between the functional detectors. Under such conditions, error in the travel time estimation is significantly large and generally unacceptable. This research evaluates the in-practice travel time estimation model during different traffic conditions. It is observed that the existing models fail to accurately estimate travel time during large detector spacing and congestion shoulder periods. Addressing this issue, an innovative Hybrid model that only considers loop data for travel time estimation is proposed. The model is tested using simulation and is validated with real Bluetooth data from Pacific Motorway Brisbane. Results indicate that during non free flow conditions and larger detector spacing Hybrid model provides significant improvement in the accuracy of travel time estimation.
Resumo:
Ramp signalling is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, ramp signalling algorithms fall into two categories: local control and coordinated control by their effective scope. Coordinated ramp signalling strategies make use of measurements from the entire motorway network to operate individual ramp signals for the optimal performances at the network level. This study proposes a multi-hierarchical strategy for coordinated ramp signalling. The strategy is structured in two layers. At the higher layer with a longer update interval, coordination group is assembled and disassembled based on the location of high-risk breakdown flow. At the lower layer with a shorter update interval, individual ramps are hired to serve the coordination and are also released based on the prevailing congestion level on the ramp. This strategy is modelled and applied to the northbound Pacific Motorway micro-simulation platform (AIMSUN). The simulation results show an effective congestion mitigation of the proposed strategy.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.
Resumo:
Combustion sources are well-known sources of electrical ions (Howard, J.B. et al. 1973). Motor vehicles emissions are one of the main sources of ions in urban environments. The presence of charged particles in motor vehicle emissions has been known for many years (Kittelson, 1986; Yu et al, 2004; Jung and Kittelson, 2005). Although these particles are probably charged by the attachment of air ions, there is very little information on the nature, sign and magnitude of the small ions (diameter < 1.6 nm) emitted by motor vehicles and/or present by the sides of roads.
Resumo:
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard-based models to develop in-depth insights into how the crash-specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, have been compared to random parameter AFT structures in terms of goodness of fit to the duration data and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway exhibits durations that are on average 19% shorter compared to the durations on motorway. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that, looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.