971 resultados para moist area classification
Resumo:
In this paper we would like to shed light the problem of efficiency and effectiveness of image classification in large datasets. As the amount of data to be processed and further classified has increased in the last years, there is a need for faster and more precise pattern recognition algorithms in order to perform online and offline training and classification procedures. We deal here with the problem of moist area classification in radar image in a fast manner. Experimental results using Optimum-Path Forest and its training set pruning algorithm also provided and discussed. © 2011 IEEE.
Resumo:
Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.
Benthic terrain modeler sea-bed classification for OFOS stations during POLARSTERN cruise ANT-XXIX/3
Resumo:
Supplements issued bimonthly, April 1961-June 1963.
Resumo:
The purpose of this study on beach quality assessment and management was to evaluate the quality of five beaches in the Algarve Sotavento region of Portugal and to identify beach users’ preferences and priorities regarding their visit to a beach. The Algarve is one of the country’s most internationally known regions and it is generally perceived as a major tourist destination. Because of the increasing level of tourists, there is a specific need to address beach quality, as overcrowding can result in excessive litter, reduce water quality and consequently reduce the socio-economic value of the area. The main methodology for the evaluation of the beach quality in this pilot project was the Bathing Area Registration and Evaluation framework (BARE), which recognizes five beach types (rural, remote, resort, urban and village) through five main priority issues of concern to beach users (water quality, scenery, litter, safety, facilities) and evaluates the beach quality, ranging from one (low) to five (high) stars. After overall bathing area classification, Quarteira-Vilamoura, Ilha do Farol, Ilha Deserta and Ilha da Armona received three-star rating and Quinta do Lago site obtained a one-star rating. The quantitative research data on beach users’ preferences and priorities was obtained through administration of 50 questionnaires per beach and showed that beach users at all sites expressed the need for improved cleanliness, safety and facilities on the beach. The BARE framework, together with the questionnaire surveys, allowed the identification of management priorities required to improve the quality of individual beaches and therefore increase income from tourism.
Resumo:
Supt. of Docs. no.: L 7.51:
Resumo:
Background: Strategies for cancer reduction and management are targeted at both individual and area levels. Area-level strategies require careful understanding of geographic differences in cancer incidence, in particular the association with factors such as socioeconomic status, ethnicity and accessibility. This study aimed to identify the complex interplay of area-level factors associated with high area-specific incidence of Australian priority cancers using a classification and regression tree (CART) approach. Methods: Area-specific smoothed standardised incidence ratios were estimated for priority-area cancers across 478 statistical local areas in Queensland, Australia (1998-2007, n=186,075). For those cancers with significant spatial variation, CART models were used to identify whether area-level accessibility, socioeconomic status and ethnicity were associated with high area-specific incidence. Results: The accessibility of a person’s residence had the most consistent association with the risk of cancer diagnosis across the specific cancers. Many cancers were likely to have high incidence in more urban areas, although male lung cancer and cervical cancer tended to have high incidence in more remote areas. The impact of socioeconomic status and ethnicity on these associations differed by type of cancer. Conclusions: These results highlight the complex interactions between accessibility, socioeconomic status and ethnicity in determining cancer incidence risk.
Resumo:
The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.
Resumo:
Marine protection has been emphasized through global and European conventions which highlighted the need for the establishment of special areas of conservation. Classification and habitat mapping have been developed to enhance the assessment of marine environment and improve spatial and strategic planning of human activities and to help on the implementation of ecosystem based management. European Nature information System (EUNIS) is a comprehensive habitat classification system to facilitate the harmonised description and collection of habitat and biotopes that has been developed by the European Environment Agency (EEA) in collaboration with experts from institutions throughout Europe.
Resumo:
Research has noted a ‘pronounced pattern of increase with increasing remoteness' of death rates in road crashes. However, crash characteristics by remoteness are not commonly or consistently reported, with definitions of rural and urban often relying on proxy representations such as prevailing speed limit. The current paper seeks to evaluate the efficacy of the Accessibility / Remoteness Index of Australia (ARIA+) to identifying trends in road crashes. ARIA+ does not rely on road-specific measures and uses distances to populated centres to attribute a score to an area, which can in turn be grouped into 5 classifications of increasing remoteness. The current paper uses applications of these classifications at the broad level of Australian Bureau of Statistics' Statistical Local Areas, thus avoiding precise crash locating or dedicated mapping software. Analyses used Queensland road crash database details for all 31,346 crashes resulting in a fatality or hospitalisation occurring between 1st July, 2001 and 30th June 2006 inclusive. Results showed that this simplified application of ARIA+ aligned with previous definitions such as speed limit, while also providing further delineation. Differences in crash contributing factors were noted with increasing remoteness such as a greater representation of alcohol and ‘excessive speed for circumstances.' Other factors such as the predominance of younger drivers in crashes differed little by remoteness classification. The results are discussed in terms of the utility of remoteness as a graduated rather than binary (rural/urban) construct and the potential for combining ARIA crash data with census and hospital datasets.
Resumo:
A new method for noninvasive assessment of tear film surface quality (TFSQ) is proposed. The method is based on high-speed videokeratoscopy in which the corneal area for the analysis is dynamically estimated in a manner that removes videokeratoscopy interference from the shadows of eyelashes but not that related to the poor quality of the precorneal tear film that is of interest. The separation between the two types of seemingly similar videokeratoscopy interference is achieved by region-based classification in which the overall noise is first separated from the useful signal (unaltered videokeratoscopy pattern), followed by a dedicated interference classification algorithm that distinguishes between the two considered interferences. The proposed technique provides a much wider corneal area for the analysis of TFSQ than the previously reported techniques. A preliminary study with the proposed technique, carried out for a range of anterior eye conditions, showed an effective behavior in terms of noise to signal separation, interference classification, as well as consistent TFSQ results. Subsequently, the method proved to be able to not only discriminate between the bare eye and the lens on eye conditions but also to have the potential to discriminate between the two types of contact lenses.
Resumo:
Large margin learning approaches, such as support vector machines (SVM), have been successfully applied to numerous classification tasks, especially for automatic facial expression recognition. The risk of such approaches however, is their sensitivity to large margin losses due to the influence from noisy training examples and outliers which is a common problem in the area of affective computing (i.e., manual coding at the frame level is tedious so coarse labels are normally assigned). In this paper, we leverage the relaxation of the parallel-hyperplanes constraint and propose the use of modified correlation filters (MCF). The MCF is similar in spirit to SVMs and correlation filters, but with the key difference of optimizing only a single hyperplane. We demonstrate the superiority of MCF over current techniques on a battery of experiments.