948 resultados para modulated photocurrent


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The density of states (DOS) above Fermi level of hydrogenated microcrystalline silicon (mu c-Si H) films is correlated to the material microstructure. We use Raman scattering and infrared absorption spectra to characterize the structure of the films made with different hydrogen dilution ratios. The DOS of the films is examined by modulated photocurrent measurement. The results have been accounted for in the framework of a three-phase model comprised of amorphous and crystalline components, with the grain boundary as the third phase. We observed that the DOS increases monotonically as the grain boundary volume fractions f(gb) is increased, which indicates a positive correlation between the DOS and the grain boundary volume fraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of hydrogen dilution, subtle boron compensation, and light-soaking on the gap states of hydrogenated amorphous silicon films (a-Si:H) near and above the threshold of microcrystallinity have been investigated in detail by the constant photocurrent method and the improved phase-shift analysis of modulated photocurrent technique. It is shown that high hydrogen dilution near the threshold of microcrystallinity leads to a more ordered network structure and to the redistribution of gap states; it gives rise to a small peak at about 0.55 eV and a shoulder at about 1.2 eV below the conduction band edge, which are associated with the formation of microcrystallites embedded in the amorphous silicon host matrix. A concurrent subtle boron compensation is demonstrated to prevent excessive formation of microcrystallinity, and to help promote the growth of the ordered regions and reduce the density of gap defect states, particularly those associated with microcrystallites. Hydrogen-diluted and appropriately boron-compensated a-Si:H films deposited near the threshold of microcrystallinity show the lowest density of the defects in both the annealed and light-soaked states, and hence, the highest performance and stability. (C) 2001 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microcrystalline silicon films were deposited by very high frequency (VHF) plasma-enhanced chemical vapor deposition (PECVD) with different hydrogen dilution. The microstructure of these films was investigated using Raman spectroscopy and infrared absorption (IR) spectra. The crystalline, amorphous, and grain boundary volume fractions X-c, X-a and X-gb were estimated from Raman measurements. An interface structure factor (R-if) is proposed to characterize the grain boundary volume fractions in IR spectroscopy. The density of states (DOS) of the microcrystalline crystalline silicon films were studied by phase-shift analysis of modulated photocurrent (MPC) and photoconductivity spectroscopy. It was observed that DOS increases with increasing grain boundary volume fractions, while the values of electron mobility-lifetime product mu T-e(e) disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a high molar extinction coefficient metal-free sensitizer composed of a triarylamine donor in combination with the 2-(2,2'-bithiophen-5-yl)acrylonitrile conjugation unit and cyanoacrylic acid as an acceptor. In conjugation with a volatile acetonitrile-based electrolyte or a solvent-free ionic liquid electrolyte, we have fabricated efficient dye-sensitized solar cells showing a corresponding 7.5% or 6.1% efficiency measured under the air mass 1.5 global sunlight. The ionic liquid cell exhibits excellent stability during a 1000 h accelerated test under the light-soaking and thermal dual stress. Intensity-modulated photocurrent and photovolatge spectroscopies were employed along with the transient photoelectrical decay measurements to detail the electron transport in the mesoporous titania films filled with these two electrolytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(6-tert-butyl-3,4-dihydro-2H-1,3-benzoxazine) was synthesized by thermally activated cationic ring opening polymerization. The structure of the polymer was confirmed by spectral and thermal studies. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were estimated using cyclic voltammetry and optical absorption. Modulated photocurrent measurement technique was employed to study the spectral and field dependence of photocurrent. Photocurrent of the order of 1.5 micro A/m2 was obtained for polymer at a biasing electric field of 40 V/mico m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis. Results Comparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR. Conclusion Taken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the accuracy of dose calculations in intensity-modulated radiotherapy of the head and neck is essential for clinical confidence in these highly conformal treatments. High dose gradients are frequently placed very close to critical structures, such as the spinal cord, and good coverage of complex shaped nodal target volumes is important for long term-local control. A phantom study is presented comparing the performance of standard clinical pencil-beam and collapsed-cone dose algorithms to Monte Carlo calculation and three-dimensional gel dosimetry measurement. All calculations and measurements are normalized to the median dose in the primary planning target volume, making this a purely relative study. The phantom simulates tissue, air and bone for a typical neck section and is treated using an inverse-planned 5-field IMRT treatment, similar in character to clinically used class solutions. Results indicate that the pencil-beam algorithm fails to correctly model the relative dose distribution surrounding the air cavity, leading to an overestimate of the target coverage. The collapsed-cone and Monte Carlo results are very similar, indicating that the clinical collapsed-cone algorithm is perfectly sufficient for routine clinical use. The gel measurement shows generally good agreement with the collapsed-cone and Monte Carlo calculated dose, particularly in the spinal cord dose and nodal target coverage, thus giving greater confidence in the use of this class solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sigma-delta modulated systems have a number of very appealing properties and are, therefore, heavily used in analog to digital converters, amplifiers, and modulators. This paper presents new results which indicate that they may also have significant potential for general purpose arithmetic processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. Methods and Materials: Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. Results: The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. Conclusions: Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.