904 resultados para modeling of arrival processes
Resumo:
Analyzing and redesigning business processes is a complex task, which requires the collaboration of multiple actors. Current approaches focus on collaborative modeling workshops where process stakeholders verbally contribute their perspective on a process while modeling experts translate their contributions and integrate them into a model using traditional input devices. Limiting participants to verbal contributions not only affects the outcome of collaboration but also collaboration itself. We created CubeBPM – a system that allows groups of actors to interact with process models through a touch based interface on a large interactive touch display wall. We are currently in the process of conducting a study that aims at assessing the impact of CubeBPM on collaboration and modeling performance. Initial results presented in this paper indicate that the setting helped participants to become more active in collaboration.
Resumo:
Analyzing and redesigning business processes is a complex task, which requires the collaboration of multiple actors. Current approaches focus on collaborative modeling workshops where process stakeholders verbally contribute their perspective on a process while modeling experts translate their contributions and integrate them into a model using traditional input devices. Limiting participants to verbal contributions not only affects the outcome of collaboration but also collaboration itself. We created CubeBPM – a system that allows groups of actors to interact with process models through a touch based interface on a large interactive touch display wall. We are currently in the process of conducting a study that aims at assessing the impact of CubeBPM on collaboration and modeling performance. Initial results presented in this paper indicate that the setting helped participants to become more active in collaboration.
Resumo:
Analyzing and redesigning business processes is a complex task, which requires the collaboration of multiple actors. Current approaches focus on workshops where process stakeholders together with modeling experts create a graphical visualization of a process in a model. Within these workshops, stakeholders are mostly limited to verbal contributions, which are integrated into a process model by a modeling expert using traditional input devices. This limitation negatively affects the collaboration outcome and also the perception of the collaboration itself. In order to overcome this problem we created CubeBPM – a system that allows groups of actors to interact with process models through a touch based interface on a large interactive touch display wall. Using this system for collaborative modeling, we expect to provide a more effective collaboration environment thus improving modeling performance and collaboration.
Resumo:
A computational model for the interrelated phenomena in the process of vacuum arc remelting is analyzed and adjusted of optimal accuracy and computation time. The decision steps in this case study are offered as an example how the coupling in models of similar processes can be addressed. Results show dominance of the electromagnetic forces over buoyancy and inertia for the investigated process conditions.
Resumo:
Mode of access: Internet.
Resumo:
Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes.
Resumo:
Solidification and melting processes involve a range of physical phenomena and their interactions (i.e., multiphysics). Computational modeling of such processes presents a significant challenge, both in representing the physics involved and in handling the resulting coupled behavior. Two methods for the computational modeling of multiphysics processes in complex geometries are highlighted in the context of four challenging applications
Resumo:
Accurate representation of the coupled effects between turbulent fluid flow with a free surface, heat transfer, solidification, and mold deformation has been shown to be necessary for the realistic prediction of several defects in castings and also for determining the final crystalline structure. A core component of the computational modeling of casting processes involves mold filling, which is the most computationally intensive aspect of casting simulation at the continuum level. Considering the complex geometries involved in shape casting, the evolution of the free surface, gas entrapment, and the entrainment of oxide layers into the casting make this a very challenging task in every respect. Despite well over 30 years of effort in developing algorithms, this is by no means a closed subject. In this article, we will review the full range of computational methods used, from unstructured finite-element (FE) and finite-volume (FV) methods through fully structured and block-structured approaches utilizing the cut-cell family of techniques to capture the geometric complexity inherent in shape casting. This discussion will include the challenges of generating rapid solutions on high-performance parallel cluster technology and how mold filling links in with the full spectrum of physics involved in shape casting. Finally, some indications as to novel techniques emerging now that can address genuinely arbitrarily complex geometries are briefly outlined and their advantages and disadvantages are discussed.
Resumo:
Bei der Simulation von Logistik- und Produktionssystem werden Zufallszahlengeneratoren verwendet, um stochastische Einflüsse zu modellieren. Ein wichtiges Qualitätsmerkmal dieser Generatoren ist die Er-zeugung möglichst unabhängiger Zufallszahlen. Werden jedoch reale Prozesse betrachtet, so sind die Daten im Allgemeinen nicht unabhängig. Diese Arbeit befasst sich mit der Analyse von Praxisdaten bezüglich des Auftretens von Abhängigkeiten. Dazu werden Korrelationsstrukturen gesucht. Außerdem wird gezeigt, dass unabhängige Zufallszahlen in der Regel ungeeignet sind, um stochastische Prozesse mit ausgeprägten Abhängigkeiten zu modellieren.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a government Shared Service provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrate this approach, we apply it in the real-life case of a European airport and show how this information can be leveraged in the re-design of "green" business processes.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a governmental Shared Services provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrative this approach, we apply it in the real-life case of an European airport and show how this information can be leveraged in the re-design of “green” busi-ness processes.
Resumo:
Process models are usually depicted as directed graphs, with nodes representing activities and directed edges control flow. While structured processes with pre-defined control flow have been studied in detail, flexible processes including ad-hoc activities need further investigation. This paper presents flexible process graph, a novel approach to model processes in the context of dynamic environment and adaptive process participants’ behavior. The approach allows defining execution constraints, which are more restrictive than traditional ad-hoc processes and less restrictive than traditional control flow, thereby balancing structured control flow with unstructured ad-hoc activities. Flexible process graph focuses on what can be done to perform a process. Process participants’ routing decisions are based on the current process state. As a formal grounding, the approach uses hypergraphs, where each edge can associate any number of nodes. Hypergraphs are used to define execution semantics of processes formally. We provide a process scenario to motivate and illustrate the approach.
Resumo:
We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol as standardized in the IEEE 802.11 Distributed Coordination Function (DCF). The approximation is that, when n of the M queues are non-empty, the (transmission) attempt probability of each of the n non-empty nodes is given by the long-term (transmission) attempt probability of n saturated nodes. With the arrival of packets into the M queues according to independent Poisson processes, the SDAR approximation reduces a single cell with non-saturated nodes to a Markovian coupled queueing system. We provide a sufficient condition under which the joint queue length Markov chain is positive recurrent. For the symmetric case of equal arrival rates and finite and equal buffers, we develop an iterative method which leads to accurate predictions for important performance measures such as collision probability, throughput and mean packet delay. We replace the MAC layer with the SDAR model of contention by modifying the NS-2 source code pertaining to the MAC layer, keeping all other layers unchanged. By this model-based simulation technique at the MAC layer, we achieve speed-ups (w.r.t. MAC layer operations) up to 5.4. Through extensive model-based simulations and numerical results, we show that the SDAR model is an accurate model for the DCF MAC protocol in single cells. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In response to the Indian Monsoon freshwater forcing, the Bay of Bengal exhibits a very strong seasonal cycle in sea surface salinity (SSS), especially near the mouths of the Ganges-Brahmaputra and along the east coast of India. In this paper, we use an eddy-permitting (similar to 25 km resolution) regional ocean general circulation model simulation to quantify the processes responsible for this SSS seasonal cycle. Despite the absence of relaxation toward observations, the model reproduces the main features of the observed SSS seasonal cycle, with freshest water in the northeastern Bay, particularly during and after the monsoon. The model also displays an intense and shallow freshening signal in a narrow (similar to 100 km wide) strip that hugs the east coast of India, from September to January, in good agreement with high-resolution measurements along two ships of opportunity lines. The mixed layer salt budget confirms that the strong freshening in the northern Bay during the monsoon results from the Ganges-Brahmaputra river discharge and from precipitation over the ocean. From September onward, the East India Coastal Current transports this freshwater southward along the east coast of India, reaching the southern tip of India in November. The surface freshening results in an enhanced vertical salinity gradient that increases salinity of the surface layer by vertical processes. Our results reveal that the erosion of the freshwater tongue along the east coast of India is not driven by northward horizontal advection, but by vertical processes that eventually overcome the freshening by southward advection and restore SSS to its premonsoon values. The salinity-stratified barrier layer hence only acts as a ``barrier'' for vertical heat fluxes, but is associated with intense vertical salt fluxes in the Bay of Bengal.