920 resultados para model validation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From Pontryagin’s Maximum Principle to the Duke Kahanamoku Aquatic Complex; we develop the theory and generate implementable time efficient trajectories for a test-bed autonomous underwater vehicle (AUV). This paper is the beginning of the journey from theory to implementation. We begin by considering pure motion trajectories and move into a rectangular trajectory which is a concatenation of pure surge and pure sway. These trajectories are tested using our numerical model and demonstrated by our AUV in the pool. In this paper we demonstrate that the above motions are realizable through our method, and we gain confidence in our numerical model. We conclude that using our current techniques, implementation of time efficient trajectories is likely to succeed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and development of process-aware information systems is often supported by specifying requirements as business process models. Although this approach is generally accepted as an effective strategy, it remains a fundamental challenge to adequately validate these models given the diverging skill set of domain experts and system analysts. As domain experts often do not feel confident in judging the correctness and completeness of process models that system analysts create, the validation often has to regress to a discourse using natural language. In order to support such a discourse appropriately, so-called verbalization techniques have been defined for different types of conceptual models. However, there is currently no sophisticated technique available that is capable of generating natural-looking text from process models. In this paper, we address this research gap and propose a technique for generating natural language texts from business process models. A comparison with manually created process descriptions demonstrates that the generated texts are superior in terms of completeness, structure, and linguistic complexity. An evaluation with users further demonstrates that the texts are very understandable and effectively allow the reader to infer the process model semantics. Hence, the generated texts represent a useful input for process model validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well understood that available water quality datasets in urban areas span only relatively short time scales unlike water quantity data, which limits the applicability of the developed models in engineering and ecological assessment of urban waterways. This paper presents the application of leave-one-out (LOO) and Monte Carlo cross validation (MCCV) procedures in a Monte Carlo framework for the validation and estimation of uncertainty associated with pollutant wash-off when models are developed using a limited dataset. It was found that the application of MCCV is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO were found to be effective in model validation when dealing with a small sample size which hinders detailed model validation and can undermine the effectiveness of stormwater quality management strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rating enables the information asymmetry existing in the issuer-investor relationship to be reduced, particularly for issues with a high degree of complexity, as is the case of securitizations. However, there may be a serious conflict of interest between the issuer’s choice and remuneration of the agency and the credit rating awarded, resulting in lower quality and information power of the published rating. In this paper, we propose an explicative model of the number of ratings requested, by analyzing the relevance of the number of ratings to measure the reliability, where multirating is shown to be associated to the quality, size, liquidity and the degree of information asymmetry relating to the issue. Thus, we consider that the regulatory changes that foster the widespread publication of simultaneous ratings could help to alleviate the problem of rating model arbitrage and the crisis of confidence in credit ratings in general and in the securitization issues, in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ocean plays an important role in regulating the climate, acting as a sink for carbon dioxide, perturbing the carbonate system and resulting in a slow decrease of seawater pH. Understanding the dynamics of the carbonate system in shelf sea regions is necessary to evaluate the impact of Ocean Acidification (OA) in these societally important ecosystems. Complex hydrodynamic and ecosystem coupled models provide a method of capturing the significant heterogeneity of these areas. However rigorous validation is essential to properly assess the reliability of such models. The coupled model POLCOMS–ERSEM has been implemented in the North Western European shelf with a new parameterization for alkalinity explicitly accounting for riverine inputs and the influence of biological processes. The model has been validated in a like with like comparison with North Sea data from the CANOBA dataset. The model shows good to reasonable agreement for the principal variables, physical (temperature and salinity), biogeochemical (nutrients) and carbonate system (dissolved inorganic carbon and total alkalinity), but simulation of the derived variables, pH and pCO2, are not yet fully satisfactory. This high uncertainty is attributed mostly to riverine forcing and primary production. This study suggests that the model is a useful tool to provide information on Ocean Acidification scenarios, but uncertainty on pH and pCO2 needs to be reduced, particularly when impacts of OA on ecosystem functions are included in the model systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban flood inundation models require considerable data for their parameterisation, calibration and validation. TerraSAR-X should be suitable for urban flood detection because of its high resolution in stripmap/spotlight modes. The paper describes ongoing work on a project to assess how well TerraSAR-X can detect flooded regions in urban areas, and how well these can constrain the parameters of an urban flood model. The study uses a TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK , in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with LiDAR data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and vegetation. An algorithm for the delineation of flood water in urban areas is described, together with its validation using the aerial photographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple four-dimensional assimilation technique, called Newtonian relaxation, has been applied to the Hamburg climate model (ECHAM), to enable comparison of model output with observations for short periods of time. The prognostic model variables vorticity, divergence, temperature, and surface pressure have been relaxed toward European Center for Medium-Range Weather Forecasts (ECMWF) global meteorological analyses. Several experiments have been carried out, in which the values of the relaxation coefficients have been varied to find out which values are most usable for our purpose. To be able to use the method for validation of model physics or chemistry, good agreement of the model simulated mass and wind field is required. In addition, the model physics should not be disturbed too strongly by the relaxation forcing itself. Both aspects have been investigated. Good agreement with basic observed quantities, like wind, temperature, and pressure is obtained for most simulations in the extratropics. Derived variables, like precipitation and evaporation, have been compared with ECMWF forecasts and observations. Agreement for these variables is smaller than for the basic observed quantities. Nevertheless, considerable improvement is obtained relative to a control run without assimilation. Differences between tropics and extratropics are smaller than for the basic observed quantities. Results also show that precipitation and evaporation are affected by a sort of continuous spin-up which is introduced by the relaxation: the bias (ECMWF-ECHAM) is increasing with increasing relaxation forcing. In agreement with this result we found that with increasing relaxation forcing the vertical exchange of tracers by turbulent boundary layer mixing and, in a lesser extent, by convection, is reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the first realtime ionospheric predictions network and its capabilities to ingest a global database and forecast F-layer characteristics and "in situ" electron densities along the track of an orbiting spacecraft. A global network of ionosonde stations reported around-the-clock observations of F-region heights and densities, and an on-line library of models provided forecasting capabilities. Each model was tested against the incoming data; relative accuracies were intercompared to determine the best overall fit to the prevailing conditions; and the best-fit model was used to predict ionospheric conditions on an orbit-to-orbit basis for the 12-hour period following a twice-daily model test and validation procedure. It was found that the best-fit model often provided averaged (i.e., climatologically-based) accuracies better than 5% in predicting the heights and critical frequencies of the F-region peaks in the latitudinal domain of the TSS-1R flight path. There was a sharp contrast however, in model-measurement comparisons involving predictions of actual, unaveraged, along-track densities at the 295 km orbital altitude of TSS-1R In this case, extrema in the first-principle models varied by as much as an order of magnitude in density predictions, and the best-fit models were found to disagree with the "in situ" observations of Ne by as much as 140%. The discrepancies are interpreted as a manifestation of difficulties in accurately and self-consistently modeling the external controls of solar and magnetospheric inputs and the spatial and temporal variabilities in electric fields, thermospheric winds, plasmaspheric fluxes, and chemistry.