997 resultados para model misspecification
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
Model misspecification affects the classical test statistics used to assess the fit of the Item Response Theory (IRT) models. Robust tests have been derived under model misspecification, as the Generalized Lagrange Multiplier and Hausman tests, but their use has not been largely explored in the IRT framework. In the first part of the thesis, we introduce the Generalized Lagrange Multiplier test to detect differential item response functioning in IRT models for binary data under model misspecification. By means of a simulation study and a real data analysis, we compare its performance with the classical Lagrange Multiplier test, computed using the Hessian and the cross-product matrix, and the Generalized Jackknife Score test. The power of these tests is computed empirically and asymptotically. The misspecifications considered are local dependence among items and non-normal distribution of the latent variable. The results highlight that, under mild model misspecification, all tests have good performance while, under strong model misspecification, the performance of the tests deteriorates. None of the tests considered show an overall superior performance than the others. In the second part of the thesis, we extend the Generalized Hausman test to detect non-normality of the latent variable distribution. To build the test, we consider a seminonparametric-IRT model, that assumes a more flexible latent variable distribution. By means of a simulation study and two real applications, we compare the performance of the Generalized Hausman test with the M2 limited information goodness-of-fit test and the Likelihood-Ratio test. Additionally, the information criteria are computed. The Generalized Hausman test has a better performance than the Likelihood-Ratio test in terms of Type I error rates and the M2 test in terms of power. The performance of the Generalized Hausman test and the information criteria deteriorates when the sample size is small and with a few items.
Resumo:
Robust decision making implies welfare costs or robustness premia when the approximating model is the true data generating process. To examine the importance of these premia at the aggregate level we employ a simple two-sector dynamic general equilibrium model with human capital and introduce an additional form of precautionary behavior. The latter arises from the robust decision maker s ability to reduce the effects of model misspecification through allocating time and existing human capital to this end. We find that the extent of the robustness premia critically depends on the productivity of time relative to that of human capital. When the relative efficiency of time is low, despite transitory welfare costs, there are gains from following robust policies in the long-run. In contrast, high relative productivity of time implies misallocation costs that remain even in the long-run. Finally, depending on the technology used to reduce model uncertainty, we fi nd that while increasing the fear of model misspecfi cation leads to a net increase in precautionary behavior, investment and output can fall.
Resumo:
Genetic research on risk of alcohol, tobacco or drug dependence must make allowance for the partial overlap of risk-factors for initiation of use, and risk-factors for dependence or other outcomes in users. Except in the extreme cases where genetic and environmental risk-factors for initiation and dependence overlap completely or are uncorrelated, there is no consensus about how best to estimate the magnitude of genetic or environmental correlations between Initiation and Dependence in twin and family data. We explore by computer simulation the biases to estimates of genetic and environmental parameters caused by model misspecification when Initiation can only be defined as a binary variable. For plausible simulated parameter values, the two-stage genetic models that we consider yield estimates of genetic and environmental variances for Dependence that, although biased, are not very discrepant from the true values. However, estimates of genetic (or environmental) correlations between Initiation and Dependence may be seriously biased, and may differ markedly under different two-stage models. Such estimates may have little credibility unless external data favor selection of one particular model. These problems can be avoided if Initiation can be assessed as a multiple-category variable (e.g. never versus early-onset versus later onset user), with at least two categories measurable in users at risk for dependence. Under these conditions, under certain distributional assumptions., recovery of simulated genetic and environmental correlations becomes possible, Illustrative application of the model to Australian twin data on smoking confirmed substantial heritability of smoking persistence (42%) with minimal overlap with genetic influences on initiation.
Resumo:
Empirical researchers interested in how governance shapes various aspects of economic development frequently use the Worldwide Governance indicators (WGI). These variables come in the form of an estimate along with a standard error reflecting the uncertainty of this estimate. Existing empirical work simply uses the estimates as an explanatory variable and discards the information provided by the standard errors. In this paper, we argue that the appropriate practice should be to take into account the uncertainty around the WGI estimates through the use of multiple imputation. We investigate the importance of our proposed approach by revisiting in three applications the results of recently published studies. These applications cover the impact of governance on (i) capital flows; (ii) international trade; (iii) income levels around the world. We generally find that the estimated effects of governance are highly sensitive to the use of multiple imputation. We also show that model misspecification is a concern for the results of our reference studies. We conclude that the effects of governance are hard to establish once we take into account uncertainty around both the WGI estimates and the correct model specification.
Resumo:
A method to estimate DSGE models using the raw data is proposed. The approachlinks the observables to the model counterparts via a flexible specification which doesnot require the model-based component to be solely located at business cycle frequencies,allows the non model-based component to take various time series patterns, andpermits model misspecification. Applying standard data transformations induce biasesin structural estimates and distortions in the policy conclusions. The proposed approachrecovers important model-based features in selected experimental designs. Twowidely discussed issues are used to illustrate its practical use.
Resumo:
[cat] Estudiem les propietats teòriques que una funció d.emparellament ha de satisfer per tal de representar un mercat laboral amb friccions dins d'un model d'equilibri general amb emparellament aleatori. Analitzem el cas Cobb-Douglas, CES i altres formes funcionals per a la funció d.emparellament. Els nostres resultats estableixen restriccions sobre els paràmetres d'aquests formes funcionals per assegurar que l.equilibri és interior. Aquestes restriccions aporten raons teòriques per escollir entre diverses formes funcionals i permeten dissenyar tests d'error d'especificació de model en els treballs empírics.
Resumo:
[cat] Estudiem les propietats teòriques que una funció d.emparellament ha de satisfer per tal de representar un mercat laboral amb friccions dins d'un model d'equilibri general amb emparellament aleatori. Analitzem el cas Cobb-Douglas, CES i altres formes funcionals per a la funció d.emparellament. Els nostres resultats estableixen restriccions sobre els paràmetres d'aquests formes funcionals per assegurar que l.equilibri és interior. Aquestes restriccions aporten raons teòriques per escollir entre diverses formes funcionals i permeten dissenyar tests d'error d'especificació de model en els treballs empírics.
Resumo:
Tests for business cycle asymmetries are developed for Markov-switching autoregressive models. The tests of deepness, steepness, and sharpness are Wald statistics, which have standard asymptotics. For the standard two-regime model of expansions and contractions, deepness is shown to imply sharpness (and vice versa), whereas the process is always nonsteep. Two and three-state models of U.S. GNP growth are used to illustrate the approach, along with models of U.S. investment and consumption growth. The robustness of the tests to model misspecification, and the effects of regime-dependent heteroscedasticity, are investigated.
Resumo:
The concept of stochastic discount factor pervades the Modern Theory of Asset Pricing. Initially, such object allows unattached pricing models to be discussed under the same terms. However, Hansen and Jagannathan have shown there is worthy information to be brought forth from such powerful concept which undelies asset pricing models. From security market data sets, one is able to explore the behavior of such random variable, determining a useful variance bound. Furthermore, through that instrument, they explore one pitfall on modern asset pricing: model misspecification. Those major contributions, alongside with some of its extensions, are thoroughly investigated in this exposition.
Resumo:
The questlon of the crowding-out of private !nvestment by public expenditure, public investment in particular , ln the Brazilian economy has been discussed more in ideological terrns than on empirical grounds. The present paper tries to avoid the limitation of previous studies by estlmatlng an equation for private investment whlch makes it possible to evaluate the effect of economic policies on prlvate investment. The private lnvestment equation was deduced modifylng the optimal flexible accelerator medel (OFAM) incorporating some channels through which public expendlture influences privateinvestment. The OFAM consists in adding adjustment costs to the neoclassical theory of investrnent. The investment fuction deduced is quite general and has the following explanatory variables: relative prices (user cost of capitaljimput prices ratios), real interest rates, real product, public expenditures and lagged private stock of capital. The model was estimated for private manufacturing industry data. The procedure adopted in estimating the model was to begin with a model as general as possible and apply restrictions to the model ' s parameters and test their statistical significance. A complete diagnostic testing was also made in order to test the stability of estirnated equations. This procedure avoids ' the shortcomings of estimating a model with a apriori restrictions on its parameters , which may lead to model misspecification. The main findings of the present study were: the increase in public expenditure, at least in the long run, has in general a positive expectation effect on private investment greater than its crowding-out effect on priva te investment owing to the simultaneous rise in interst rates; a change in economlc policy, such as that one of Geisel administration, may have an important effect on private lnvestment; and reI ative prices are relevant in determining the leveI of desired stock of capital and private investrnent.
Resumo:
Contracts paying a guaranteed minimum rate of return and a fraction of a positive excess rate, which is specified relative to a benchmark portfolio, are closely related to unit-linked life-insurance products and can be considered as alternatives to direct investment in the underlying benchmark. They contain an embedded power option, and the key issue is the tractable and realistic hedging of this option, in order to rigorously justify valuation by arbitrage arguments and prevent the guarantees from becoming uncontrollable liabilities to the issuer. We show how to determine the contract parameters conservatively and implement robust risk-management strategies.
Resumo:
My dissertation has three chapters which develop and apply microeconometric tech- niques to empirically relevant problems. All the chapters examines the robustness issues (e.g., measurement error and model misspecification) in the econometric anal- ysis. The first chapter studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treat- ment variable is mismeasured and endogenous. I characterize the sharp identified set for the local average treatment effect under the following two assumptions: (1) the exclusion restriction of an instrument and (2) deterministic monotonicity of the true treatment variable in the instrument. The identification strategy allows for general measurement error. Notably, (i) the measurement error is nonclassical, (ii) it can be endogenous, and (iii) no assumptions are imposed on the marginal distribution of the measurement error, so that I do not need to assume the accuracy of the measure- ment. Based on the partial identification result, I provide a consistent confidence interval for the local average treatment effect with uniformly valid size control. I also show that the identification strategy can incorporate repeated measurements to narrow the identified set, even if the repeated measurements themselves are endoge- nous. Using the the National Longitudinal Study of the High School Class of 1972, I demonstrate that my new methodology can produce nontrivial bounds for the return to college attendance when attendance is mismeasured and endogenous.
The second chapter, which is a part of a coauthored project with Federico Bugni, considers the problem of inference in dynamic discrete choice problems when the structural model is locally misspecified. We consider two popular classes of estimators for dynamic discrete choice models: K-step maximum likelihood estimators (K-ML) and K-step minimum distance estimators (K-MD), where K denotes the number of policy iterations employed in the estimation problem. These estimator classes include popular estimators such as Rust (1987)’s nested fixed point estimator, Hotz and Miller (1993)’s conditional choice probability estimator, Aguirregabiria and Mira (2002)’s nested algorithm estimator, and Pesendorfer and Schmidt-Dengler (2008)’s least squares estimator. We derive and compare the asymptotic distributions of K- ML and K-MD estimators when the model is arbitrarily locally misspecified and we obtain three main results. In the absence of misspecification, Aguirregabiria and Mira (2002) show that all K-ML estimators are asymptotically equivalent regardless of the choice of K. Our first result shows that this finding extends to a locally misspecified model, regardless of the degree of local misspecification. As a second result, we show that an analogous result holds for all K-MD estimators, i.e., all K- MD estimator are asymptotically equivalent regardless of the choice of K. Our third and final result is to compare K-MD and K-ML estimators in terms of asymptotic mean squared error. Under local misspecification, the optimally weighted K-MD estimator depends on the unknown asymptotic bias and is no longer feasible. In turn, feasible K-MD estimators could have an asymptotic mean squared error that is higher or lower than that of the K-ML estimators. To demonstrate the relevance of our asymptotic analysis, we illustrate our findings using in a simulation exercise based on a misspecified version of Rust (1987) bus engine problem.
The last chapter investigates the causal effect of the Omnibus Budget Reconcil- iation Act of 1993, which caused the biggest change to the EITC in its history, on unemployment and labor force participation among single mothers. Unemployment and labor force participation are difficult to define for a few reasons, for example, be- cause of marginally attached workers. Instead of searching for the unique definition for each of these two concepts, this chapter bounds unemployment and labor force participation by observable variables and, as a result, considers various competing definitions of these two concepts simultaneously. This bounding strategy leads to partial identification of the treatment effect. The inference results depend on the construction of the bounds, but they imply positive effect on labor force participa- tion and negligible effect on unemployment. The results imply that the difference- in-difference result based on the BLS definition of unemployment can be misleading
due to misclassification of unemployment.
Resumo:
The thesis deals with the problem of Model Selection (MS) motivated by information and prediction theory, focusing on parametric time series (TS) models. The main contribution of the thesis is the extension to the multivariate case of the Misspecification-Resistant Information Criterion (MRIC), a criterion introduced recently that solves Akaike’s original research problem posed 50 years ago, which led to the definition of the AIC. The importance of MS is witnessed by the huge amount of literature devoted to it and published in scientific journals of many different disciplines. Despite such a widespread treatment, the contributions that adopt a mathematically rigorous approach are not so numerous and one of the aims of this project is to review and assess them. Chapter 2 discusses methodological aspects of MS from information theory. Information criteria (IC) for the i.i.d. setting are surveyed along with their asymptotic properties; and the cases of small samples, misspecification, further estimators. Chapter 3 surveys criteria for TS. IC and prediction criteria are considered for: univariate models (AR, ARMA) in the time and frequency domain, parametric multivariate (VARMA, VAR); nonparametric nonlinear (NAR); and high-dimensional models. The MRIC answers Akaike’s original question on efficient criteria, for possibly-misspecified (PM) univariate TS models in multi-step prediction with high-dimensional data and nonlinear models. Chapter 4 extends the MRIC to PM multivariate TS models for multi-step prediction introducing the Vectorial MRIC (VMRIC). We show that the VMRIC is asymptotically efficient by proving the decomposition of the MSPE matrix and the consistency of its Method-of-Moments Estimator (MoME), for Least Squares multi-step prediction with univariate regressor. Chapter 5 extends the VMRIC to the general multiple regressor case, by showing that the MSPE matrix decomposition holds, obtaining consistency for its MoME, and proving its efficiency. The chapter concludes with a digression on the conditions for PM VARX models.