786 resultados para mini sensor
Resumo:
The construction of a low cost mini sensor containing a bismuth-film electrode (BiFE), as work electrode, a silver electrode as pseudo reference electrode, and copper as counter electrode is proposed. The application of this mini sensor using a low cost electrochemical cell for in loco voltammetric determinations of inorganic and organic analytes is also described.
Resumo:
Copepods were sampled at two sampling sites off the island of São Vicente, Cape Verde Archipelago, in spring (March/April) and early summer (May/June) of 2010. The two sampling sites were located in Mindelo Bay (16.90N, 25.01W; bottom depth 22 m) and around 8 km off the town of São Pedro (16.77N, 25.12W; bottom depth 800 m). Samples were collected on board the local fishing vessel 'Sinagoga' using a WP-2 net (Hydrobios, 0.26 m**2 mouth opening, 200 µm mesh size). The net was either applied as a driftnet, drifting for 10 min in 22 to 0 m depth below the surface, or it was towed vertically with a towing speed of 0.5 m/s**1. For stratified sampling, the net was deployed in repetitive hauls from 560 to 210 m, from 210 to 80 m, and from 80 to 0 m in March/April and from 600 to 300 m, 300 to 100 m, and 100 to 0 m in May/June. Additional depth-integrated hauls were conducted from 600-0 m or 500-0 m during both field campaigns. Respiration rates of epi- and mesopelagic calanoid copepods were measured in the land-based laboratory at the Instituto Nacional de Desenvolvimento das Pescas (INDP) in Mindelo. Oxygen consumption was measured non-invasively by optode respirometry at three different ambient temperatures (13, 18, and 23°C) with a 10-channel oxygen respirometer (Oxy-10 Mini, PreSens Precision Sensing GmbH, Regensburg, Germany). All experiments were run in darkness in temperature-controlled incubators (LMS Cooled Incubator Series 1A, Model 280) equipped with water baths to ensure constant temperatures throughout the experiments, tolerating a variation of ±1°C.
Resumo:
This thesis aims at addressing the development of autonomous behaviors, for search and exploration with a mini-UAV (Unmanned Aerial Vehicle), or also called MAV (Mini Aerial Vehicle) prototype, in order to gather information in rescue scenarios. The platform used in this work is a four rotor helicopter, known as quad-rotor from the German company Ascending Technologies GmbH, which is later assembled with a on-board processing unit (i.e. a tiny light weight computer) and a on-board sensor suite (i.e. 2D-LIDAR and Ultrasonic Sonar). This work can be divided into two phases. In the first phase an Indoor Position Tracking system was settled in order to obtain the Cartesian coordinates (i.e. X, Y, Z) and orientation (i.e.heading) which provides the relative position and orientation of the platform. The second phase was the design and implementation of medium/high level controllers on each command input in order to autonomously control the aircraft position, which is the first step towards an autonomous hovering flight, and any autonomous behavior (e.g. Landing, Object avoidance, Follow the wall). The main work is carried out in the Laboratory ”Intelligent Systems for Emergencies and Civil Defense”, in collaboration with ”Dipartimento di Informatica e Sistemistica” of Sapienza Univ. of Rome and ”Istituto Superiore Antincendi” of the Italian Firemen Department.
Resumo:
Tese de mestrado integrado, Engenharia da Energia e do Ambiente, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
In this thesis, we will introduce the innovative concept of a plenoptic sensor that can determine the phase and amplitude distortion in a coherent beam, for example a laser beam that has propagated through the turbulent atmosphere.. The plenoptic sensor can be applied to situations involving strong or deep atmospheric turbulence. This can improve free space optical communications by maintaining optical links more intelligently and efficiently. Also, in directed energy applications, the plenoptic sensor and its fast reconstruction algorithm can give instantaneous instructions to an adaptive optics (AO) system to create intelligent corrections in directing a beam through atmospheric turbulence. The hardware structure of the plenoptic sensor uses an objective lens and a microlens array (MLA) to form a mini “Keplerian” telescope array that shares the common objective lens. In principle, the objective lens helps to detect the phase gradient of the distorted laser beam and the microlens array (MLA) helps to retrieve the geometry of the distorted beam in various gradient segments. The software layer of the plenoptic sensor is developed based on different applications. Intuitively, since the device maximizes the observation of the light field in front of the sensor, different algorithms can be developed, such as detecting the atmospheric turbulence effects as well as retrieving undistorted images of distant objects. Efficient 3D simulations on atmospheric turbulence based on geometric optics have been established to help us perform optimization on system design and verify the correctness of our algorithms. A number of experimental platforms have been built to implement the plenoptic sensor in various application concepts and show its improvements when compared with traditional wavefront sensors. As a result, the plenoptic sensor brings a revolution to the study of atmospheric turbulence and generates new approaches to handle turbulence effect better.
Resumo:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011
Resumo:
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
Resumo:
The Ophira Mini Sling System involves anchoring a midurethral, low-tension tape to the obturator internus muscles bilaterally at the level of the tendinous arc. Success rates in different subsets of patients are still to be defined. This work aims to identify which factors influence the 2-year outcomes of this treatment. Analysis was based on data from a multicenter study. Endpoints for analysis included objective measurements: 1-h pad-weight (PWT), and cough stress test (CST), and questionnaires: International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF) and Urinary Distress Inventory (UDI)-6. A logistic regression analysis evaluated possible risk factors for failure. In all, 124 female patients with stress urinary incontinence (SUI) underwent treatment with the Ophira procedure. All patients completed 1 year of follow-up, and 95 complied with the 2-year evaluation. Longitudinal analysis showed no significant differences between results at 1 and 2 years. The 2-year overall objective results were 81 (85.3%) patients dry, six (6.3%) improved, and eight (8.4%) incontinent. A multivariate analysis revealed that previous anti-incontinence surgery was the only factor that significantly influenced surgical outcomes. Two years after treatment, women with previous failed surgeries had an odds ratio (OR) for treatment failure (based on PWT) of 4.0 [95% confidence interval (CI) 1.02-15.57). The Ophira procedure is an effective option for SUI treatment, with durable good results. Previous surgeries were identified as the only significant risk factor, though previously operated patients showed an acceptable success rate.
Resumo:
OBJETIVO: este estudo teve como objetivo avaliar a influência da largura do septo inter-radicular no local de inserção de mini-implantes autoperfurantes sobre o grau de estabilidade desses dispositivos de ancoragem. MÉTODOS: a amostra consistiu de 40 mini-implantes inseridos entre as raízes do primeiro molar e segundo pré-molar superiores de 21 pacientes, com o intuito de fornecer ancoragem para retração anterior. A largura do septo no local de inserção (LSI) foi mensurada nas radiografias pós-cirúrgicas e, sob esse aspecto, os mini-implantes foram divididos em dois grupos: grupo 1 (áreas críticas, LSI<3mm) e grupo 2 (áreas não críticas, LSI>3mm). A estabilidade dos mini-implantes foi avaliada mensalmente pela quantificação do grau de mobilidade e a partir dessa variável foi calculada a proporção de sucesso. Avaliou-se também: a quantidade de placa, altura de inserção, grau de sensibilidade e período de observação. RESULTADOS: os resultados obtidos demonstraram que não houve diferença estatisticamente significativa para o grau de mobilidade e proporção de sucesso entre os mini-implantes inseridos em septos de largura mesiodistal crítica e não crítica. A proporção de sucesso total encontrada foi de 90% e nenhuma variável demonstrou estar relacionada ao insucesso dos mini-implantes. No entanto, observou-se maior sensibilidade nos pacientes cujos mini-implantes apresentavam mobilidade, e que a falha desses dispositivos de ancoragem ocorria logo após sua inserção. CONCLUSÃO: a largura do septo inter-radicular no local de inserção não interferiu na estabilidade dos mini-implantes autoperfurantes avaliados neste estudo.
Resumo:
This study evaluated fracture torque by torsion, in relation to the length and diameter of orthodontic mini-implants, to demonstrate their viability for clinical and experimental use based on the torque recommended by the manufacturers. The fractures at the moment of insertion, whose incidence in the literature is around 4%, are principally due to excessive force and the inability of the implant to resist rotational forces. Thirty orthodontic mini-implants of three commercial brands available in Brazil (Neodent 1.6 x 9 mm, Dentoflex 1.6 x 9 mm and Kopp 1.6 x 9 mm) were attached to a device made specifically for this research, leaving the mini-implants with sufficient stability. The miniimplants were submitted to torsion torque, using a digital torque wrench, until their breaking point. The values obtained with the test were submitted to analysis of variance and the Tukey test. The mean values of mini-implant ruptures were 26 N.cm for group A (Dentoflex), 25.4 N. cm for group B (Kopp) and 32.8 N.cm for group C (Neodent). From the Tukey test we could observe that the relationships between the means of the Dentoflex and Neodent groups, and between the Kopp and Neodent groups, were significant. Between the Dentoflex and Kopp groups, significance was nonexistent. All the values found in our research for fracture torque were higher than the limits recommended by the manufacturers for clinical use in orthodontics. The highest values were found in the Neodent group.
Resumo:
OBJETIVO: o propósito do presente estudo é avaliar o limite de resistência à flexão de um protótipo de mini-implante desenvolvido para ancoragem do aparelho de Herbst. MÉTODOS: após a realização de um cálculo do tamanho da amostra, quatro corpos de prova contendo os protótipos de mini-implantes foram submetidos a uma força de flexão por engastamento simples, utilizando-se uma máquina universal de ensaios mecânicos, sendo calculado o limite de resistência à força de flexão. RESULTADOS: após os ensaios mecânicos, os novos mini-implantes apresentaram o limite de resistência à força de flexão de 98,2kgf, que foi o menor valor encontrado. CONCLUSÃO: os protótipos de mini-implantes desenvolvidos para ancoragem do aparelho de Herbst foram capazes de suportar forças de flexão maiores do que as forças de mordida descritas na literatura.
Resumo:
O objetivo deste trabalho foi avaliar a distribuição de tensões na resina em contato com os filetes de roscas de mini-implantes cilíndricos e cônicos, submetidos à carga lateral e torção de inserção. Um modelo fotoelástico foi confeccionado com gelatina transparente, para simular o osso alveolar. O modelo foi observado com um polariscópio plano e fotografado antes e após a ativação dos mini-implantes com força lateral e de inserção. A aplicação de cargas laterais provocou momentos fletores nos mini-implantes, aparecimento de franjas isocromáticas ao longo dos filetes do corpo dos mini-implantes e no ápice. Quando foi aplicado o torque de inserção, verificou-se a concentração de tensões próxima ao ápice. Concluiu-se que: (1) o mini-implante cilíndrico apresentou maior concentração de tensões no ápice, e (2) o mini-implante cônico apresentou maior concentração de tensões nos filetes de rosca apicais.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Objective: To describe the ultrastructure of the interface between periodontal tissues and titanium mini-implants in rat mandibles. Materials and Methods: A titanium mini-implant was placed between the buccal roots of the mandibular first molar of 24 adult rats. After 21, 30, 45, 60, 90, and 120 days of implantation, the mandibular portion was removed and fixed in cacodylate-buffered 2% glutaraldehyde + 2.5% formaldehyde. The material was decalcified and processed for scanning and transmission electron microscopy. Results: Ultrastructural analysis revealed a thin cementum-like layer at longer times after implantation at the areas in which the periodontal ligament was in contact with the implant. Conclusions: The alveolar bone and the periodontal ligament reorganized their constituents around the implant, and a thin cementum-like layer was formed at longer times after implantation at the areas in which the periodontal ligament was in contact with the implant. (Angle Orthod. 2010;80:459-435.)