980 resultados para microwave irradiation
Resumo:
The reduction of meso-formyl derivatives of 5,15-diaryl- and 5,10,15-triphenylporphyrin (and their nickel(II) complexes) to the corresponding meso-methyl porphyrins is achieved in high yield by microwave heating of the substrate in dimethylformamide (DMF) in the presence of acids such as trifluoroacetic acid, or even just with added water. The reactions are complete in less than 30 min at 250 °C. The reaction is strongly suppressed in very dry DMF in the absence of added acid. The meso-hydroxymethyl porphyrins are also reduced to the methyl derivatives, suggesting the primary alcohols may be intermediates in the exhaustive reduction. UV-visible spectra taken at intervals during reaction at 240 °C indicated that at least one other intermediate is present, but it was not identified. In d7-DMF, the methylporphyrin isolated was mainly Por-CD2H, showing that both of the added hydrogens arise from the solvent, and not from the added water or acid.
Resumo:
In the present work we report a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant (cationic, anionic, non ionic and polymeric), without the use of any templates. The method is simple, inexpensive, and helps one to prepare nanostructures in quick time, measured in seconds and minutes. This method has been applied successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with changes in different process parameters, such as microwave power, irradiation time, identity of solvent, type of surfactant, and its concentration.
Resumo:
Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.
Resumo:
We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chromium substituted beta diketonate complexes of aluminium have been synthesized and employed as precursors for a novel soft chemistry process wherein microwave irradiation of a solution of the complex yields within minutes well crystallized needles of alpha (Al1 XCrx)(2)O-3 measuring 20 30 nm in diameter and 50 nm long By varying the microwave irradiation parameters and using a surfactant such as polyvinyl pyrrolidone the crystallite size and shape can be controlled and their agglomeration prevented These microstructural parameters as well as the polymorph of the Cr substituted Al2O3 formed may also be controlled by employing a different complex Samples of alpha (Al1 XCrx)(2)O-3 have been characterized by XRD FTIR and TEM The technique results in material of homogeneous metal composition, as shown by EDAX and can be adjusted as desired The technique has been extended to obtain coatings of alpha (Al1 XCrx)(2)O-3 on Si(100)
Resumo:
Irradiation of 4-aryl-4-alkylhex-5-en-2-ones (e.g. 1a) or 5-aryl-4-alkylhex-5-en-2-ones (e.g. 2a) adsorbed on montmorillonite K-10 in a commercial microwave oven furnishes the multialkylated naphthalenes (e.g. 3).
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a facile one-step route to controlled synthesis of colloidal KMgF3 nanocrystals via the thermolysis of metal trifluoroacetate precursors in combined solvents (OA/OM) using microwave irradiation. X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were employed to characterize the samples. Only through the variation of the OA/OM ratio, can the phase and shape of nanocrystals be readily controlled, resulting in the formation of well-defined near-spherical nanoparticles, and nanoplates of cubic-phased KMgF3, as well as nanorods of tetragonal-phased MgF2, and a possible mechanism has been proposed to elucidate this effect. Furthermore, all these samples in this system can be well dispersed in nonpolar solvents such as cyclohexane to form stable and clear colloidal solutions, due to the successful coating of organic surfactants (OA/OM) on the nanocrystal surface.
Resumo:
The effect of inorganic salts such as sodium chloride on the hydrolysis of chitosan in a microwave field was investigated. While it is known that microwave heating is a convenient way to obtain a wide range of products of different molecular weights only by changing the reaction time and/or the radiation power, the addition of some inorganic salts was shown to effectively accelerate the degradation of chitosan under microwave irradiation. The molecular weight of the degraded chitosan obtained by microwave irradiation was considerably lower than that obtained by traditional heating. Moreover, the molecular weight of degraded chitosan obtained by microwave irradiation assisted under the conditions of added salt was considerably lower than that obtained by microwave irradiation without added salt. Furthermore, the effect of ionic strength of the added salts was not linked with the change of molecular weight. FTIR spectral analyses demonstrated that a significantly shorter time was required to obtain a satisfactory molecular weight by the microwave irradiation-assisted inorganic salt method than by microwave irradiation without inorganic salts and conventional technology. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effect of inorganic salts on the hydrolysis of starch in a microwave field was investigated and it was found that some inorganic salts can effectively accelerate the acid hydrolysis of starch. The yield of D-glucose reached 111 wt% (equal to the theoretical yield). (C) 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
An ethanolic mixture of molybdenurn hexacarbonyl and DBU mediates the reduction of nitroarenes to the corresponding anilines in excellent yields in 15-30 minutes under microwave irradiation.