912 resultados para microvessel tissue engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-culture systems, consisting of outgrowth endothelial cells (OEC) and primary osteoblasts (pOB), represent a prom¬ising instrument to mimick the natural conditions in bone repair processes and provide a new concept to develop constructs for bone replacement. Furthermore, co-culture of OEC and pOB could provide new insights into the molecular and cellular mechanisms that control essential processes during bone repair. The present study described several advantages of the co-culture of pOB and OEC for bone tissue engineering applications, including beneficial effects on the angiogenic activation of OEC, as well as on the assembly of basement membrane matrix molecules and factors involved in vessel maturation and stabilization. The ongoing angiogenic process in the co-culture system proceeded during the course of co-cultivation and correlated with the upregulation of essential angiogenic factors, such as VEGF, angiopoietins, basement membrane molecules and mural cell-specific markers. Furthermore the co-culture system appeared to maintain osteogenic differentiation capacity.rnrnAdditional treatment of co-cultures with growth factors or morphogens might accelerate and improve bone formation and furthermore could be useful for potential clinical applications. In this context, the present study highlights the central role of the morphogen, sonic hedgehog, which has been shown to affect angiogenic activation as well as osteogenic differentiation in the co-culture model of OEC and pOB. Treatment of co-cultures with sonic hedgehog resulted in an increased formation of microvessel-like structures as early as after 24 hours. This proangiogenic effect was induced by the upregulation of the proangiogenic factors, VEGF, angiopoietin1 and angiopoietin 2. In contrast to treatment with a commonly used proangiogenic agent, VEGF, Shh stimulation induced an increased expression of factors associated with vessel maturation and stabilization, mediated through the upregulation of growth factors that are strongly involved in pericyte differentiation and recruitment, including PDGF-BB and TGFbeta. In addition, Shh treatment of co-cultures also resulted in an upregulation of osteogenic differentiation markers like alkaline phosphatase, osteocalcin, osteonectin and osteopontin, as well as an increased matrix calcification. This was a result of upregulation of the osteogenic differentiation regulating factors, BMP2 and RUNX2 which could be assessed in response to Shh treatment. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although many different materials, techniques and methods, including artificial or engineered bone substitutes, have been used to repair various bone defects, the restoration of critical-sized bone defects caused by trauma, surgery or congenital malformation is still a great challenge to orthopedic surgeons. One important fact that has been neglected in the pursuit of resolutions for large bone defect healing is that most physiological bone defect healing needs the periosteum and stripping off the periosteum may result in non-union or non-healed bone defects. Periosteum plays very important roles not only in bone development but also in bone defect healing. The purpose of this project was to construct a functional periosteum in vitro using a single stem cell source and then test its ability to aid the repair of critical-sized bone defect in animal models. This project was designed with three separate but closely-linked parts which in the end led to four independent papers. The first part of this study investigated the structural and cellular features in periostea from diaphyseal and metaphyseal bone surfaces in rats of different ages or with osteoporosis. Histological and immunohistological methods were used in this part of the study. Results revealed that the structure and cell populations in periosteum are both age-related and site-specific. The diaphyseal periosteum showed age-related degeneration, whereas the metaphyseal periosteum is more destructive in older aged rats. The periosteum from osteoporotic bones differs from normal bones both in terms of structure and cell populations. This is especially evident in the cambial layer of the metaphyseal area. Bone resorption appears to be more active in the periosteum from osteoporotic bones, whereas bone formation activity is comparable between the osteoporotic and normal bone. The dysregulation of bone resorption and formation in the periosteum may also be the effect of the interaction between various neural pathways and the cell populations residing within it. One of the most important aspects in periosteum engineering is how to introduce new blood vessels into the engineered periosteum to help form vascularized bone tissues in bone defect areas. The second part of this study was designed to investigate the possibility of differentiating bone marrow stromal cells (BMSCs) into the endothelial cells and using them to construct vascularized periosteum. The endothelial cell differentiation of BMSCs was induced in pro-angiogenic media under both normoxia and CoCl2 (hypoxia-mimicking agent)-induced hypoxia conditions. The VEGF/PEDF expression pattern, endothelial cell specific marker expression, in vitro and in vivo vascularization ability of BMSCs cultured in different situations were assessed. Results revealed that BMSCs most likely cannot be differentiated into endothelial cells through the application of pro-angiogenic growth factors or by culturing under CoCl2-induced hypoxic conditions. However, they may be involved in angiogenesis as regulators under both normoxia and hypoxia conditions. Two major angiogenesis-related growth factors, VEGF (pro-angiogenic) and PEDF (anti-angiogenic) were found to have altered their expressions in accordance with the extracellular environment. BMSCs treated with the hypoxia-mimicking agent CoCl2 expressed more VEGF and less PEDF and enhanced the vascularization of subcutaneous implants in vivo. Based on the findings of the second part, the CoCl2 pre-treated BMSCs were used to construct periosteum, and the in vivo vascularization and osteogenesis of the constructed periosteum were assessed in the third part of this project. The findings of the third part revealed that BMSCs pre-treated with CoCl2 could enhance both ectopic and orthotopic osteogenesis of BMSCs-derived osteoblasts and vascularization at the early osteogenic stage, and the endothelial cells (HUVECs), which were used as positive control, were only capable of promoting osteogenesis after four-weeks. The subcutaneous area of the mouse is most likely inappropriate for assessing new bone formation on collagen scaffolds. This study demonstrated the potential application of CoCl2 pre-treated BMSCs in the tissue engineering not only for periosteum but also bone or other vascularized tissues. In summary, the structure and cell populations in periosteum are age-related, site-specific and closely linked with bone health status. BMSCs as a stem cell source for periosteum engineering are not endothelial cell progenitors but regulators, and CoCl2-treated BMSCs expressed more VEGF and less PEDF. These CoCl2-treated BMSCs enhanced both vascularization and osteogenesis in constructed periosteum transplanted in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer aided technologies, medical imaging, and rapid prototyping has created new possibilities in biomedical engineering. The systematic variation of scaffold architecture as well as the mineralization inside a scaffold/bone construct can be studied using computer imaging technology and CAD/CAM and micro computed tomography (CT). In this paper, the potential of combining these technologies has been exploited in the study of scaffolds and osteochondral repair. Porosity, surface area per unit volume and the degree of interconnectivity were evaluated through imaging and computer aided manipulation of the scaffold scan data. For the osteochondral model, the spatial distribution and the degree of bone regeneration were evaluated. In this study the versatility of two softwares Mimics (Materialize), CTan and 3D realistic visualization (Skyscan) were assessed, too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.