663 resultados para micron blowout


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed electron-microscopic analysis on 0.5-1.0µm grains in order to study radiation damage by the solar-wind. We are reporting some interesting results we have found in monomineralic grains from core sample 15010,1130. This is a submature soil which has been studied for rare gas abundance and ferromagnetic resonance by (1) and modal petrology by (2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first successful attempt to produce simultaneously ultrafine grain size and weak texture in a single-phase magnesium alloy Mg-3Al-0.4Mn through an optimal choice of processing parameters in a modified multi-axial forging (MAF) process. An average grain size of similar to 0.4 mu m and a weak texture could be achieved. This has led to an increase in the strength as well as room-temperature ductility (55%). The plot of the yield loci shows a decrease in anisotropy after MAF. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of hybridizing micro-Ti with nano-SiC particulates on the microstructural and the mechanical behaviour of Mg-5.6Ti composite were investigated. Mg materials containing micron-sized Ti particulates hybridized with different amounts of nano-size SiC particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. The microstructural and mechanical behaviour of the developed Mg hybrid composites were studied in comparison with Mg-5.6Ti. Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-SiC particulates. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + 1.0SiC)(BM) hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction, when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(5.6Ti + 1.0SiC)(BM) hybrid composites. The superior strength properties of the Mg-(5.6Ti + x-SiC)(BM) hybrid composites when compared to Mg-5.6Ti is attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles, achieved by nano-SiC addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture toughness measurements at the small scale have gained prominence over the years due to the continuing miniaturization of structural systems. Measurements carried out on bulk materials cannot be extrapolated to smaller length scales either due to the complexity of the microstructure or due to the size and geometric effect. Many new geometries have been proposed for fracture property measurements at small-length scales depending on the material behaviour and the type of device used in service. In situ testing provides the necessary environment to observe fracture at these length scales so as to determine the actual failure mechanism in these systems. In this paper, several improvements are incorporated to a previously proposed geometry of bending a doubly clamped beam for fracture toughness measurements. Both monotonic and cyclic loading conditions have been imposed on the beam to study R-curve and fatigue effects. In addition to the advantages that in situ SEM-based testing offers in such tests, FEM has been used as a simulation tool to replace cumbersome and expensive experiments to optimize the geometry. A description of all the improvements made to this specific geometry of clamped beam bending to make a variety of fracture property measurements is given in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micronsized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed- phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail.The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size effects of mechanical behaviors of materials are referred to the variation of the mechanical behavior due to the sample sizes changing from macroscale to micro-/nanoscales. At the micro-/nanoscale, since sample has a relatively high specific surface area (SSA) (ratio of surface area to volume), the surface although it is often neglected at the macroscale, becomes prominent in governing the energy effect, although it is often neglected at the macroscale, becomes prominent in governing the mechanical behavior. In the present research, a continuum model considering the surface energy effect is developed through introducing the surface energy to total potential energy. Simultaneously, a corresponding finite element method is developed. The model is used to analyze the axial equilibrium strain problem for a Cu nanowire at the external loading-free state. As another application of the model, from dimensional analysis, the size effects of uniform compression tests on the microscale cylinder specimens for Ni and Au single crystals are analyzed and compared with experiments in literatures. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some factors that affect the experimental results in nanoindentation tests such as the contact depth, contact area, load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation, we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardness decrease can be bated if the continuous stiffness measurement technique is not adopted; this indicates that the test method itself may also be one of the factors causing the hardness being descended.