42 resultados para microcapsule


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel poly-l-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show that the membrane strength and permeating property are both remarkably affected with the changes of sodium alginate concentration. With the sodium alginate concentration increasing, gel beads sizes increase from 233 mum to 350 mum, release ratio is also higher at the same time, but the membrane strength decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA/poly-L-lysine (PLL) capsules were constructed through a layer-by-layer (LbL) self-assembly of DNA and PLL on CaCO3 microparticles, and then used as dual carriers for DNA and drug after dissolution of carbonate cores. The permeability of DNA/PLL microcapsules was investigated with fluorescence probes with different molecular weights by confocal microscopy. The result revealed that the fluorescence probes were able to penetrate the capsule walls even its molecular weight up to 150 kDa. The resultant capsules were used to load drug model molecules-fluorescein isothiocyanate (FITC)-dextran (4 kDa) via spontaneous deposition mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrosis caused by the host response to long-term transplanted microcapsules and the limitation of traditional L929 cell model for biocompatibility testing inspire the development of an assay of biocompatibility based on macrophage behavior. In this paper, the human monocytic cell line THP-1 was utilized for biocompatibility evaluation of microcapsule materials. The cell viability and secretion of nitric oxide (NO) and cytokines served as index of biocompatibility were assayed. It was found that the evaluated microcapsule materials had no effect on the stimulation of NO and cytokines secretion, which meant that these materials were biocompatible. Furthermore, it suggests the THP-1 cell a convenient in vitro experimental model that might be useful for long-term predictions of material biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to analyze the characteristics of protein permeability in alainate-polylysine-alginate (APA) and alginate-chitosan-alginate (ACA) microcapsules by mathematical models based on the balance of chemical potential. The comparison between calculated results and experimental data shows that the models can describe the process of protein diffusion from microcapsule and protein release into microcapsule successfully. The influences of membrane composition on the permeability of ACA microcapsule have been investigated and analyzed. The effect of resistance on the mass transfer is further analyzed theoretically with the aid of mathematical modeling. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel chitosan-based microcapsule containing patchouli oil was developed by a non-toxic procedure for the purpose of improving the stability of patchouli oil and achieving a durable controlled release effect. The microcapsules were characterized in case of morphology, particle size and size distribution, infrared spectrum, and the drug controlled-release properties of microcapsules were investigated under constant temperature of 25 °C. The results indicated that the microcapsules were spherical in shape with good dispersibility and smooth surface, and the particle size of microcapsules ranged from 1 to 10 ?m. The controlled-release of patchouli oil could still be remained about 60% in the microcapsules after 10 days, which demonstrated that the stability of patchouli oil were effectively improved after being encapsulated in microcapsules. It is believed that this study will not only provide a novel chitosan-based microcapsule production containing patchouli oil, but also promote the applications of microcapsule technology for improving the bioavailability of active volatile oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo di questo elaborato di tesi è sintetizzare microcapsule di dimensioni non superiori ai 20 micron, contenenti un composto termocromico in modo da funzionare come indicatori di temperatura. Le capsule devono essere quindi in grado di variare la propria colorazione in funzione della temperatura del mezzo in cui sono disperse o dell’ambiente circostante, senza degradarsi. Il core è costituito da una miscela contenente un pigmento termocromico il cui colore varia da verde intenso se mantenuto a temperature ambiente, fino ad un verde pallido, quasi bianco, per temperature inferiori ai 10°C. Il core è stato quindi incapsulato in uno shell, costituito da una resina melammina-formaldeide (MF) mediante polimerizzazione in situ. Questo processo prevede la sintesi di un prepolimero MF che viene poi fatto reticolare in presenza di una emulsione del core in soluzione acquosa. Per prima cosa è stato ottimizzata la sintesi del prepolimero a partire da una soluzione acquosa di melammina e formaldeide. Vista la tossicità della formaldeide (H341-H350-H370) è stata studiata anche la possibilità di sostituire questo reagente con la sua forma polimerica (paraformaldeide) che a 45°C circa degrada rilasciando formaldeide in situ. In questo modo il processo risulta molto più sicuro anche in previsione di un suo possibile sviluppo industriale. In seguito è stato ottimizzato il processo di microincapsulazione in emulsione su vari tipi di core e studiando l’effetto di vari parametri (pH, temperatura, rapporto core/shell, tipo di emulsionante ecc.), sulle dimensioni e la stabilità delle microcapsule finali. Queste sono quindi state caratterizzate mediante spettrometria Infrarossa in trasformata di Fourier (FT-IR) e la loro stabilità termica è stata controllata tramite analisi TermoGravimetrica (TGA). Il processo di reticolazione (curing) della resina, invece, è stato studiato tramite Calorimetria Differenziale a Scansione (DSC). Le microcapsule sono inoltre state analizzate tramite Microscopio Elettronico (OM) e Microscopio Elettronico a Scansione (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results on the preparation of microcapsules containing liquid organosilica, and their co-deposition with copper in an acidic copper electrolyte onto a carbon steel cathode to form a copper/microcapsule composite coating. Microscopic analyses of the surface and the cross-section of the coating confirm the incorporation of the liquid-containing microcapsules in the coating layer. The influence of microcapsules in the electrolyte on the cathode polarization, as well as that of process conditions on the microcapsule inclusion, is also discussed. (C) 2004 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responsive core-shell latex particles are used to prepare colloidosome microcapsules using thermal annealing and internal cross-linking of the shell, allowing production of the microcapsules at high concentrations. The core-shell particles are composed of a polystyrene core and a shell of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[methyl methacrylate] (PDMA-b-PMMA) chains adsorbed onto the core surface, providing steric stabilisation. The PDMA component of adsorbed polymer shell confers the latex particle thermal and pH responsive characteristics, it also provides glass transitions at lower temperatures than that of the core and reactive amine groups. These features facilitate the formation of stable Pickering emulsion droplets and the immobilisation of the latex particle monolayer on these droplets to form colloidosome microcapsules. The immobilisation is achieved through thermal annealing or cross-linking of the shell at mild conditions feasible for large scale economic production. We demonstrate here that it is possible to anneal the particle monolayer on the emulsion drop surface at 75-86 ºC by using the lower glass transition temperature of the shell compared to that of the polystyrene cores (~108 ºC). The colloidosome microcapsules formed have a rigid membrane basically composed of a monolayer of particles. Chemical cross-linking has also been successfully achieved by confining a cross-linker within the disperse droplet. This approach leads to the formation of single-layered stimulus-responsive soft colloidosome membranes and provides the advantage of working at very high emulsion concentrations since inter-droplet cross-linking is thus avoided. The porosity and mechanical strength of microcapsules are also discussed here in terms of the observed structure of the latex particle monolayers forming the capsule membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims To observe medication solid dosage form modification in aged care facilities (ACFs), and assess staff levels of self-perceived knowledge of medication modification and the types of resources available to them. Method Observation of medication rounds in a convenience sample of Australian Capital Territory ACFs and assessment of staff knowledge of dosage form modification and available resources. Results From 160 observations across six medication rounds, 29 residents had a total of 75 medications modified by the nursing staff prior to administration, with 32% of these instances identified as inappropriate. The methods used for crushing and administration resulted in drug mixing, spillage and incomplete dosing. The staff reported adequate resources; however, a lack of knowledge on how to locate and use these resources was evident. Conclusions Improved staff training on how to use available resources is needed to reduce the observed high incidence of inappropriate medication crushing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of hydrophobic and hydrophilic drugs in the polymer microcapsule offers the possibility of developing a new drug delivery system that combines the best features of these two distinct classes of material. Recently, we have reported the encapsulation of an uncharged water-insoluble drug in the polymer membrane. The hydrophobic drug is deposited using a layer-by-layer (LbL) technique, which is based on the sequential adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we report the encapsulation of two different drugs, which are invariably different in structure and in their solubility in water. We have characterized these dual drug vehicular capsules by confocal laser scanning microscopy, atomic force microscopy, visible microscopy, and transmission electron microscopy. The growth of a thin film on a flat substrate by LbL was monitored by UV−vis spectra. The desorption kinetics of two drugs from the thin film was modeled by a second-order rate model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fabrication of multilayer microcapsules via layer-by-layer approach through hydrogen bonding has attracted enormous interest due to its strong response to pH. In this communication, we have prepared hydrogen-bonded multilayer microcapsule without using any cross-linking agent by using DNA base pair (adenine and thymine) modified biocompatible polymers. The growth of the self-assembly on colloidal (melamine formaldehyde: MF) particles has been monitored with zeta potential measurement. The capsules were obtained on dissolution of MF particles at 0.1N HCl. The capsules were characterized with scanning electron microscopy. Moreover, we have observed the salt induced microscopic change in self-assembly of this system on the surface of colloidal particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文由三章组成。第一章介绍了中药蜘蛛香的化学成分的研究成果,第二章为羧甲基魔芋葡苷聚糖-壳聚糖为细胞膜的天冬酰胺酶人工细胞的研究,第三章综述了人工细胞在生物医学领域的应用。 第一章报道了中药蜘蛛香(Valeriana wallichii)根部乙醇提取物的化学成分,采用正、反相硅胶层析等分离方法和MS、NMR等多种波谱手段,从中共分离鉴定出17个化合物,分别为缬草素(valtrate,1),valechlorine(2),homobadrinal(3),baldrinal(4),乙酰缬草素(acevaltrate 5),valeriotetrate C(6),valeriotetrate B(7),对羟基苯乙酮(4'-hydroxy-acetophenone 8),7-hydroxy valtrate(9),8-methylvalepotriate(10),1,5-dihydroxy-3,8-epoxyvalechlorine A(11),二氢缬草素(didrovaltrate 12),胡萝卜苷(13),橙皮苷 (hesperidin 14),prinsepiol-4-O-β-D-glucopyranoside(15),longiflorone(16),乙基糖苷(17)。其中化合物6、7、10、和11为新化合物,化合物9、15、16为首次从该植物中得到。新化合物11为含有氯原子的刚性骨架环烯醚萜,并且确定了其绝对构型。 第二章报道了以羧甲基魔芋葡苷聚糖(CKGM)和壳聚糖(CS)为膜的固定化L-天冬酰胺酶人工细胞研究成果。利用羧甲基魔芋葡苷聚糖和壳聚糖两种生物相容性很好的天然多糖之间的静电吸引力,在非常温和的条件下制备成具有半透过性膜的人工细胞,将治疗儿童急性成淋巴细胞性白血病(ALL)的药物L-天冬酰胺酶包裹在内。通过考察温度和pH对人工细胞的影响,结果表明以CKGM- CS为膜的L-天冬酰胺酶人工细胞对温度和pH的稳定性和耐受性均高于自由酶,说明CKGM-CS对酶具有保护作用,而且小分子底物和产物可以自由进出膜内外,而包裹在膜内的生物大分子则不能泄露出来。 第三章综述了微囊化人工细胞的研究进展。 This dissertation consists of three parts. In the first part, the chemical constituents from the root of Valeriana wallichii were reported. In the second part, preparation and characteristics of L-Asparaginase Artificial cell were reported. The third part is a review on progress of microcapsule artificial cell. The first chapter is about the isolation and identification of the chemical constituents from the root of V. wallichii. Seventeen compounds were isolated from the ethanol extract of roots of V. wallichii through repeated column chromatography on normal and reversed phase silica gel. By the spectroscopic and chemical evidence, their structures were elucidated as valtrate (1), valechlorine (2), homobadrinal (3), baldrinal (4), acevaltrate (5), valeriotetrate C (6), valeriotetrate B (7), 4'-hydroxy-acetophenone (8), 7-hydroxy valtrate (9), 8-methylvalepotriate (10), 1,5-dihydroxy-3,8-epoxyvalechlorine A (11), didrovaltrate (12), daucosterol (13), hesperidin (14), prinsepiol-4-O-β-D-glucopyranoside (15), longiflorone (16), and ethyl glucoside (17). Among them, 6, 7, 10, and 11 are new compounds. 15, 16 and 9 were isolated from this plant for the first time. The absolute configuration of compound 11, an unusual iridoid bearing a C-10 chlor-group and an oxo-bridge connecting C-3 and C-8 resulting in a rigid skeleton, was confirmed. The second chapter is about the semi-permeable microcapsule of carboxymethyl konjac glucomannan-chitosan for L-asparaginase immobilization. Carboxymethyl konjac glucomannan-chitosan (CKGM-CS) microcapsules, which have good biocompatibility, prepared under very mild conditions via polyelectrostatic complexation, were used for immobilize L-asparaginase-a kind of drug for acute lymphoblastic leukemia (ALL). The activity and stability under different temperature and pH of the enzyme loaded-microcapsules were studied. The results indicated the immobilized enzyme has better stability and activity contrasting to the native enzyme. The study illustrates that the L-asparaginase could be protected in CKGM-CS microcapsules, the substrate and product could pass through the system freely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyurea microcapsules about 2.5 mum in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diisocyanate and ethylenediamine as monomers in an emulsion system. Hexadecane was used as a phase change material and OP, which is nonionic surfactant, and used as an emulsifier. The chemical structure and thermal behavior of the microcapsules were investigated by FTIR and thermal analysis respectively. The results show encapsulated hexadecane has a good potential as a solar energy storage material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For heat energy storage application, polyurea. microcapsules containing phase change material, n-eicosane, were synthesized by using interfacial polymerization method with toluene- 2,4-diisocyanate (TDI) and diethylenetriamine (DETA) as monomers in an emulsion system. Poly(ethylene glycol)octyl-phenyl ether (OP), a nonionic surfactant, was the emulsifier for the system. The experimental result indicates that TDI was reacted with DETA in a mass ratio of 3 to 1. FT-IR spectra confirm the formation of wall material, polyurea, from the two monomers, TDI and DETA. Encapsulation efficiency of n-eicosane is about 75%. Microcapsule of n-eicosane melts at a temperature close to that of n-eicosane, while its stored heat energy varies with core material n-eicosane when wall material fixed. Thermo-gravimetric analysis shows that core material n-eicosane, micro-n-eicosane and wall material polyurea can withstand temperatures up to 130, 170 and 250 degreesC, respectively.