876 resultados para micro-mesoporous hybrids
Resumo:
A simple method to characterize the micro and mesoporous carbon media is discussed. In this method, the overall adsorption quantity is the sum of capacities of all pores (slit shape is assumed), in each of which the process of adsorption occurs in two sequential steps: the multi-layering followed by pore filling steps. The critical factor in these two steps is the enhancement of the pressure of occluded 'free' molecules in the pore as well as the enhancement of the adsorption layer thickness. Both of these enhancements are due to the overlapping of the potential fields contributed by the two opposite walls. The classical BET and modified Kelvin equations are assumed to be applicable for the two steps mentioned above, with the allowance for the enhanced pore pressure, the enhanced adsorption energy and the enhanced BET constant,all of which vary with pore width. The method is then applied to data of many carbon samples of different sources to derive their respective pore size distributions, which are compared with those obtained from DFT analysis. Similar pore size distributions (PSDs) are observed although our method gives sharper distribution. Furthermore, we use our theory to analyze adsorption data of nitrogen at 77 K and that of benzene at 303 K (ambient temperature). The PSDs derived from these two different probe molecules are similar, with some small differences that could be attributed to the molecular properties, such as the collision diameter. Permeation characteristics of sub-critical fluids are also discussed in this paper. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper we apply a method recently developed by Do and co-workers(1) for the prediction of adsorption isotherms of pure vapors on carbonaceous materials. The information required for the prediction is the pore size distribution and the BET constant, C, of a corresponding nonporous surface (graphite). The dispersive adsorption force is assumed to be the dominant force in adsorption mechanism. This applies to nonpolar and weakly polar hydrocarbons. We test this predictive model against the adsorption data of benzene, toluene, n-pentane, n-hexane, and ethanol on a commercial activated carbon. It is found that the predictions are excellent for all adsorbates tested with the exception of ethanol where the predicted values are about 10% less than the experimental data, and this is probably attributed to the electrostatic interaction between ethanol molecules and the functional groups on the carbon surfaces.
Resumo:
In this paper, we present a model accounting for the adsorbate-adsorbate interaction in the adsorbed phase in the description of adsorption of pure vapors on carbonaceous materials. The details of the adsorbate-adsorbate interaction of a particular species are obtained from the analysis of its adsorption data on non-porous carbon black. The predictability of the model is tested against the adsorption isotherm data for benzene, toluene, n-pentane, n-hexane, carbon tetrachloride, methanol and ethanol on microporous activated carbon. It was found that the model prediction for non-polar adsorbates are satisfactory while it under-predicts for polar adsorbates, which is attributed to their additional interaction with functional groups. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Micro-mesoporous hybrid materials of ZSM-12/MCM-41 type with different micro- and mesoporosity contributions were prepared by a procedure that uses the desilication of the zeolite in an alkaline medium, followed by recrystallization onto the mesostructure, where the zeolite is used as the silica source in the formation of mesoporous phase. The materials were characterized by X-ray diffraction, nitrogen adsorption-desorption at 77 K, scanning electron microscopy and thermal analysis. The results showed that the methodology utilized is efficient for obtaining hybrid materials of ZSM-12/MCM-41 type with optimized micro-and mesoporosity.
Resumo:
The catalytic properties of monomodal microporous and bimodal micro-mesoporous zeolites were investigated in the gas-phase dehydration of glycerol. The desilication methodology used to produce the mesoporous zeolites minimized diffusion limitations and increased glycerol conversion in the catalytic reaction due to the hierarchical system of secondary pores created in the zeolite crystals. The chemical and structural properties of the catalyst were studied by X-ray diffraction, nitrogen adsorption-desorption isotherms, NH3-TPD and pyridine chemisorption followed by IR-spectroscopy. Although the aim was to desilicate to create mesoporosity in the zeolite crystals, the desilication promoted the formation of extra-framework aluminum species that affected the conversion of glycerol and the products distribution. The results clearly show that the mesoporous zeolites with designed mesopore structure allowed a rapid diffusion and consequently improved the reaction kinetics. However, especial attention must be given to the desilication procedure because the severity of the treatment negatively interfered on the Brønsted and Lewis acid sites relative concentration and, consequently, in the efficiency of the catalysis performed by these materials. On the other hand, during the catalytic reaction, the intracrystalline mesopores allowed carbonaceous compounds to be deposited herein, resulting in less blocked micropores and catalysts with higher long-term stability.
Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO2 Adsorption
Resumo:
A series of activated carbons were prepared by carbonization of polyaniline at different temperatures, using KOH or K2CO3 as activating agent. Pure microporous or micro/mesoporous activated carbons were obtained depending on the preparation conditions. Carbonization temperature has been proven to be a key parameter to define the textural properties of the carbon when using KOH. Low carbonization temperatures (400–650 °C) yield materials with a highly developed micro- and mesoporous structure, whereas high temperatures (800 °C) yield microporous carbons. Some of the materials prepared using KOH exhibit a BET surface area superior to 4000 m2/g, with total pore volume exceeding 2.5 cm3/g, which are among the largest found for activated carbons. On the other hand, microporous materials are obtained when using K2CO3, independently of carbonization temperature. Some of the materials were tested for CO2 capture due to their high microporosity and N content. The adsorption capacity for CO2 at atmospheric pressure and 0 °C achieves a value of ∼7.6 mmol CO2/g, which is among the largest reported in the literature. This study provides guidelines for the design of activated carbons with a proper N/C ratio for CO2 capture at atmospheric pressure.
Resumo:
Nanostructured carbons with relatively high nitrogen content (3–8%) and different micro and mesoporosity ratio were prepared by activation of polyaniline (PANI) with a ZnCl2–NaCl mixture in the proportion of the eutectic (melting point 270 °C). It was found that the activated carbons consisted of agglomerated nanoparticles. ZnCl2 plays a key role in the development of microporosity and promotes the binding between PANI nanoparticles during heat treatment, whereas NaCl acts as a template for the development of mesoporosity of larger size. Carbons with high micropore and mesopore volumes, above 0.6 and 0.8 cm3/g, respectively, have been obtained. Furthermore, these materials have been tested for CO2 capture and storage at pressures up to 4 MPa. The results indicate that the nitrogen groups present in the surface do not seem to affect to the amount of CO2 adsorbed, not detecting strong interactions between CO2 molecules and nitrogen functional groups of the carbon, which are mainly pyridinic and pyrrolic groups.
Resumo:
A catalyst of great interest to the scientific community tries to unite the structure of ordered pore diameter from mesoporous materials with the properties of stability and acid activity to microporous zeolites. Thus a large number of materials was developed in the past decades, which although being reported as zeolites intrinsically they fail to comply with some relevant characteristics to zeolites, and recently were named zeolitic materials of high accessibility. Among the various synthesis strategies employed, the present research approaches the synthesis methods of crystallization of silanized protozeolitic units and the method of protozeolitic units molded around surfactant micelles, in order for get materials defined as hierarchical zeolites and micro-mesoporous hybrid materials, respectively. As goal BEA/MCM-41 hybrid catalysts with bimodal pore structure formed by nuclei of zeolite Beta and cationic surfactant cetyltrimethylammonium were developed. As also was successfully synthesized the hierarchical Beta zeolite having a secondary porosity, in addition to the typical and uniform zeolite micropores. Both catalysts were applied in reactions of catalytic cracking of high density polyethylene (HDPE), to evaluate its properties in catalytic activity, aiming at the recycling of waste plastics to obtain high value-added raw materials and fuels. The BEA/MCM-41 hybrid materials with 0 days of pre-crystallization did not show enough properties for use in catalytic cracking reactions, but they showed superior catalytic properties compared to those ordered mesoporous materials of Al-MCM-41 type. The structure of Beta zeolite with hierarchical porosity leads the accessibility of HDPE bulky molecules to active centers, due to high external area. And provides higher conversion to hydrocarbons in the gasoline range, especially olefins which have great interest in the petrochemical industry
Resumo:
LaFe(1-x)CO(x)O(3) perovskites were conventionally or nanocasting synthesized. The nanocasting involved the preparation of a micro-mesoporous carbon mould using a Silica Aerosil 200 and a carbon source. Then, perovskites were carbon cast at 800 degrees C. The solids were characterized by XRD, N(2) sorption, FTIR, TGA/DTG, SEM and TEM. N(2) sorption evidenced that the nanocast perovskites did not show significant intraparticle porosity in despite of their enhanced (30-50 m(2)/g) specific surface area (SSA). Nevertheless, TEM images, XRD and Rietveld refinement data showed that the solids are constituted at least by 97 wt% of perovskite phase and by agglomerates smaller than 100 nm constituted by crystallites of about 6 nm. TGA/DTG results demonstrated carbon oxidation during the perovskite formation, thus eliminating the template effect and facilitating the occurrence of sintering, which limited the SSA increase. The nanocast perovskites were more active in the reduction of NO than the uncast ones, behavior that was attributed to the increase in their SSA that allows the exposure of a higher number of accessible active sites. However, the perovskite composition and the presence of impurities can reduce the effect of the improvement of the textural properties. The nanocast perovskites also showed high thermal and catalytic stability, corroborating their potential as catalysts for the studied reaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The processing of heavy oil produced in Brazil is an emergency action and a strategic plan to obtain self-sufficiency and economic surpluses. Seen in these terms, it is indispensable to invest in research to obtain new catalysts for obtaining light fraction of hydrocarbons from heavy fractions of petroleum. This dissertation for the degree of Doctor of Philosophy reports the materials preparation that combine the high catalytic activity of zeolites with the greater accessibility of the mesoporosity, more particularly the HZSM-5/MCM-41 hybrid, done by synthesis processes with less environmental impact than conventional ones. Innovative methodologies were developed for the synthesis of micro-mesoporous hybrid material by dual templating mechanism and from crystalline zeolitic aluminosilicate in the absence of organic template. The synthesis of hybrid with pore bimodal distribution took place from one-single organic directing agent aimed to eliminate the use of organic templates, acids of any kind or organic solvents like templating agent of crystalline zeolitic aluminosilicate together with temperature-programmed microwave-assisted, making the experimental procedures of preparation most practical and easy, with good reproducibility and low cost. The study about crystalline zeolitic aluminosilicate in the absence of organic template, especially MFI type, is based on use of H2O and Na+ cation playing a structural directing role in place of an organic template. Advanced characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Highresolution Transmission Electron Microscopy (HRTEM), Adsorption of N2 and CO2, kinetic studies by Thermogravimetric Analysis (TGA) and Pyrolysis coupled to Gas Chromatography/Mass Spectrometry (Pyrolysis-GC/MS) were employed in order to evaluate the synthesized materials. Achieve the proposed objectives, has made available a set of new methodologies for the synthesis of zeolite and hybrid micro-mesoporous material, these suitable for catalytic pyrolysis of heavy oils aimed at producing light fraction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
The main constituents of red mud produced in Aluminio city (S.P., Brazil) are iron, aluminum, and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002 mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400 degrees C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide-oxide phase transitions of iron (primary phase transition) and aluminum (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminum confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500 degrees C where the classification changes to micro/mesoporous.
Resumo:
The diffraction pattern of Fe3O4 (not shown) confirmed the presence of only one phase, corresponding to magnetite with a lattice parameter a = 8.357 Å and a crystallite size of 16.6 ± 0.2 nm. The diffraction pattern of MGNC (not shown) confirmed the presence of a graphitic phase, in addition to the metal phase, suggesting that Fe3O4 nanoparticles were successfully encapsulated within a graphitic structure during the synthesis of MGNC. The core-shell structure of MGNC is unequivocally demonstrated in the TEM micrograph shown in Fig. 1b. Characterization of the MGNC textural and surface chemical properties revealed: (i) stability up to 400 oC under oxidizing atmosphere; (ii) 27.3 wt.% of ashes (corresponding to the mass fraction of Fe3O4); (iii) a micro-mesoporous structure with a fairly well developed specific surface area (SBET = 330 m2 g-1); and (iv) neutral character (pHPZC = 7.1). In addition, the magnetic nature of MGNC (Fig. 2) is an additional advantage for possible implementation of in situ magnetic separation systems for catalyst recovery.
Resumo:
In this paper, we present a technique for equilibria characterization of activated carbon having slit-shaped pores. This method was first developed by Do (Do, D. D. A new method for the characterisation of micro-mesoporous materials. Presented at the International Symposium on New Trends in Colloid and Interface Science, September 24-26, 1998 Chiba, Japan) and applied by his group and other groups for characterization of pore size distribution (PSD) as well as adsorption equilibria determination of a wide range of hydrocarbons. It is refined in this paper and compared with the grand canonical Monte Carlo (GCMG) simulation and density functional theory (DFT). The refined theory results in a good agreement between the pore filling pressure versus pore width and those obtained by GCMG and DFT. Furthermore, our local isotherms are qualitatively in good agreement with those obtained by the GCMC simulations. The main advantage of this method is that it is about 4 orders of magnitude faster than the GCMC simulations, making it suitable for optimization studies and design purposes. Finally, we apply our method and the GCMG in the derivation of the PSD of a commercial activated carbon. It was found that the PSD derived from our method is comparable to that derived from the GCMG simulations.