20 resultados para metylotransferazy histonowe H3K4


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wydział Biologii

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O retardo mental (RM) é caracterizado por um funcionamento intelectual significantemente abaixo da média (QI<70). A prevalência de RM varia entre estudos epidemiológicos, sendo estimada em 2-3% da população mundial, constituindo assim, um dos mais importantes problemas de saúde pública. Há um consenso geral de que o RM é mais comum no sexo masculino, um achado atribuído às numerosas mutações nos genes encontrados no cromossomo X, levando ao retardo mental ligado ao X (RMLX). Dentre os genes presentes no cromossomo X, o Jumonji AT-rich interactive domain IC (JARID1C) foi recentemente identificado como um potencial candidato etiológico do RM, quando mutado. O JARID1C codifica uma proteína que atua como uma desmetilase da lisina 4 da histona H3 (H3K4), imprescindível para a regulação epigenética. Tão recente como a identificação do gene JARID1C, é a descoberta de que mudanças no número de cópias de sequências de DNA, caracterizadas por microdeleções e microduplicações, poderiam ser consideradas como razões funcionalmente importantes de RMLX. Atualmente, cerca de 5-10% dos casos de RM em homens são reconhecidos por ocorrerem devido a estas variações do número de cópias no cromossomo X. Neste estudo, investigamos mutações no gene JARID1C, através do rastreamento dos éxons 9, 11, 12, 13, 15 e 16, em 121 homens de famílias com RM provavelmente ligado ao X. Paralelamente, realizamos a análise da variação do número de cópias em 16 genes localizados no cromossomo X através da técnica de MLPA no mesmo grupo de pacientes. Esta metodologia consiste em uma amplificação múltipla que detecta variações no número de cópias de até 50 sequências diferentes de DNA genômico, sendo capaz de distinguir sequências que diferem em apenas um nucleotídeo. O DNA genômico foi extraído a partir de sangue periférico e as amostras foram amplificadas pela técnica de PCR, seguida da análise por sequenciamento direto. Foram identificadas três variantes na sequência do gene JARID1C entre os pacientes analisados: a variante intrônica 2243+11 G>T, que esteve presente em 67% dos pacientes, a variante silenciosa c.1794C>G e a mutação inédita nonsense c.2172C>A, ambas presentes em 0,82% dos indivíduos investigados. A análise através do MLPA revelou uma duplicação em um dos pacientes envolvendo as sondas referentes ao gene GDI1 e ao gene HUWE1. Este trabalho expande o estudo de mutações no gene JARID1C para a população brasileira ereforça a importância da triagem de mutações neste gene em homens portadores de RM familiar de origem idiopática, assim como, é primeiro relato científico relativo à investigação de variações no número de cópias de genes localizados no cromossomo X em homens brasileiros com RM, através da técnica de MLPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Deficiência Intelectual (DI) é uma condição complexa, que acomete 2-3% da população mundial, constituindo um importante problema de saúde pública. No entanto, uma parcela significativa dos casos de DI permanece sem um diagnóstico definitivo, o que demonstra que muitos fatores etiológicos associados a esta condição ainda precisam ser elucidados. Há um consenso de que o número de homens com DI supera em 30% o número de mulheres, um achado atribuído à presença de mutações em genes localizados no cromossomo X. Dentre os genes presentes neste cromossomo que são expressos no cérebro, o Jumonji AT-rich interactive domain 1C (JARID1C) foi identificado como um potencial candidato a estar relacionado à DI ligada ao X (DILX). O gene JARID1C codifica uma desmetilase da lisina 4 da histona H3 (H3K4), imprescindível para a regulação epigenética. Tão importante quanto o estudo do gene JARID1C em pacientes com DI é a busca por variações no número de cópias gênicas (VNCs) em regiões cromossômicas subteloméricas. Genes relacionados ao desenvolvimento cerebral são enriquecidos em VNCs e as regiões subteloméricas são mais susceptíveis à formação destes rearranjos. Diante do exposto, neste estudo, investigamos mutações no gene JARID1C (exons 3, 4, 5, 8, 10, 14 e 23) em 148 homens portadores de DI pertencentes a famílias com padrão de segregação sugestivo de DILX. Paralelamente, analisamos VNCs subteloméricas em 174 homens com DI familiar de etiologia idiopática, independente do padrão de segregação. Para todos os indivíduos selecionados, amostras de DNA genômico foram extraídas a partir de sangue periférico e alterações genéticas frequentemente relacionadas à DI foram previamente excluídas (expansões trinucleotídicas nos loci FRAXA e FRAXE e mutações nos genes MECP2 e ARX). A análise do gene JARID1C foi realizada pela técnica de PCR, seguida da análise dos produtos amplificados por sequenciamento. Foram identificadas quatro variantes silenciosas (c.564G>A, c.633G>C, c.1884G>A, c.1902C>A). Através da análise in silico de sequências exônicas acentuadoras de splicing (ESEs) localizadas nas posições das variantes encontradas, foi possível classificar a variante c.1884G>A como neutra e as três variantes restantes como possíveis criadoras de ESEs. Já para a investigação das VNCs subteloméricas, foi utilizada a metodologia de Multiplex Ligation-dependent Probe Amplification (MLPA), capaz de identificar microdeleções e microduplicações nas 46 regiões subteloméricas. Para este fim, inicialmente, os indivíduos foram investigados pelo kit de MLPA P036, enquanto que para aqueles que exibiram alterações também foi utilizado o kit P070. A validação das VNCs encontradas foi realizada por PCR quantitativo em Tempo Real. A análise por MLPA revelou um indivíduo apresentando duas deleções (9p e 13q), um indivíduo apresentando duas amplificações (1p e 2p), dois indivíduos apresentando uma deleção e uma amplificação (18p e 18q; 4p e 8p), quatro indivíduos portadores de uma deleção cada (10p, 20p, 3q e 22q) e dois indivíduos com uma amplificação cada (7q e 20p). Algumas das alterações subteloméricas encontradas (2,87%) representam VNCs de relevância clínica para o estudo da DI, reforçando a importância do rastreamento de rotina de VNCs subteloméricas na DI familiar. Consideramos que a elucidação de novos genes ou mecanismos moleculares diretamente relacionados à DI é um caminho promissor e urgente para o estabelecimento de novas estratégias terapêuticas possíveis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

供体细胞的同步化处理可能改变其表观遗传特性,进而影响胚胎的克隆效率。研究同步化处理对小鼠胎儿成纤维细胞(mouse embryonicf ibroblasts,MEFs)组蛋白H3K9甲基化、乙酰化及组蛋白H3K4单甲基化、三甲基化表达的影响。分离培养MEFs,增殖稳定的第3代MEFs分别用5mL/L血清饥饿处理4d或15mL/LDM-SO处理2d使细胞处于增殖抑制期,通过免疫组化染色和Image-J图像处理软件,相对定量比较不同处理情况下组蛋白H3K9甲基化、乙酰化和组蛋白H3K4单甲基化、三甲基化变化情况。Ki-67染色检测结果表明,两种同步化处理可使细胞处于G0期或G1期。DMSO处理使MEFs组蛋白H3K9乙酰化表达水平升高,而5mL/L血清饥饿处理则使其表达水平下降;此外,两种同步化处理均导致组蛋白H3K9甲基化和H3K4单甲基化表达下降,但不影响组蛋白H3K4三甲基化的表达水平。研究结论表明:同步化处理可改变MEFs组蛋白乙酰化和甲基化表达水平,进而有可能影响胚胎克隆效率。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wydział Biologii: Instytut Biologii Molekularnej i Biotechnologii

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain-containing family of demethylases comprises 27 members which can demethylate mono-, di- and tri-methylated lysine residues of histone (or non-histone) targets. To evaluate their role in regulation of hematopoietic stem cell (HSC) behaviour we performed a RNAi-based screen and found that demethylases JARID1B (H3K4) and JHDM1F (H3K9) play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSC with preserved long term in vivo lympho-myeloid differentiation potential. Jarid1b knockdown was associated with an increase in expression levels of 5’ Hoxa cluster genes and CxCl5 , and reduced levels of Pu.1, Egr1 and Cav1. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative, and Jhdmlf as a positive regulator of HSC activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A repressor of the transition to flowering in Arabidopsis is the MADS box protein FLOWERING LOCUS C (FLC). FCA, an RNA-binding protein, and FY, a homolog of the yeast RNA 3' processing factor Pfs2p, downregulate FLC expression and therefore promote flowering. FCA/FY physically interact and alter polyadenylation/3' processing to negatively autoregulate FCA. Here, we show that FCA requires FLOWERING LOCUS D (FLD), a homolog of the human lysine-specific demethylase 1 (LSD1) for FLC downregulation. FCA also partially depends on DICER-LIKE 3, involved in chromatin silencing. fca mutations increased levels of unspliced sense FLC transcript, altered processing of antisense FLC transcripts, and increased H3K4 dimethylation in the central region of FLC. These data support a close association of FCA and FLD in mediating H3K4 demethylation and thus transcriptional silencing of FLC and reveal roles for antisense RNA processing and DCL3 function in this regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La chromatine est essentielle au maintien de l’intégrité du génome, mais, ironiquement, constitue l’obstacle principal à la transcription des gènes. Plusieurs mécanismes ont été développés par la cellule pour pallier ce problème, dont l’acétylation des histones composant les nucléosomes. Cette acétylation, catalysée par des histones acétyl transférases (HATs), permet de réduire la force de l’interaction entre les nucléosomes et l’ADN, ce qui permet à la machinerie transcriptionnelle de faire son travail. Toutefois, on ne peut laisser la chromatine dans cet état permissif sans conséquence néfaste. Les histone déacétylases (HDACs) catalysent le clivage du groupement acétyle pour permettre à la chromatine de retrouver une conformation compacte. Cette thèse se penche sur la caractérisation de la fonction et du mécanisme de recrutement des complexes HDACs Rpd3S et Set3C. Le complexe Rpd3S est recruté aux régions transcrites par une interaction avec le domaine C-terminal hyperphosphorylé de Rpb1, une sous-unité de l’ARN polymérase II. Toutefois, le facteur d’élongation DSIF joue un rôle dans la régulation de cette association en limitant le recrutement de Rpd3S aux régions transcrites. L’activité HDAC de Rpd3S, quant à elle, dépend de la méthylation du résidu H3K36 par l’histone méthyltransférase Set2. La fonction du complexe Set3C n’est pas clairement définie. Ce complexe est recruté à la plupart de ses cibles par l’interaction entre le domaine PHD de Set3 et le résidu H3K4 di- ou triméthylé. Un mécanisme indépendant de cette méthylation, possiblement le même que pour Rpd3S, régit toutefois l’association de Set3C aux régions codantes des gènes les plus transcrits. La majorité de ces résultats ont été obtenus par la technique d’immunoprécipitation de la chromatine couplée aux biopuces (ChIP-chip). Le protocole technique et le design expérimental de ce type d’expérience fera aussi l’objet d’une discussion approfondie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les cellules souches hématopoïétiques (CSH) sont rares, mais indispensables pour soutenir la production des cellules matures du sang, un tissu en constant renouvellement. Deux caractéristiques principales les définissent; la propriété d’auto-renouvellement (AR), ou la capacité de préserver leur identité cellulaire suivant une division, et la multipotence, ce potentiel de différentiation leur permettant de générer toutes les lignée hématopoïétiques. De par leurs attributs, les CSH sont utilisée en thérapie cellulaire dans le domaine de la transplantation. Une organisation tissulaire hiérarchique est aussi préservée dans la leucémie, ou cancer du sang, une masse tumorale hétérogène devant être maintenue par une fraction de cellules au potentiel prolifératif illimité, les cellules souches leucémiques (CSL). Les travaux présentés dans ce manuscrit visent à explorer les bases moléculaires de l’AR, encore mal définies. Certains membres de la famille des facteurs de transcription à homéodomaine HOX sont impliqués dans la régulation de l’hématopoïèse normale, et leur dérégulation peut contribuer à la transformation leucémique. En particulier, la surexpression du gène Hoxb4 dans les CSH influence leur destin cellulaire, favorisant des divisions d’auto-renouvellement et leur expansion en culture et in vivo. En général, les CSH s’épuisent rapidement lorsque maintenue hors de leur niche ex vivo. Différents facteurs interagissent avec les HOX et modulent leur liaison à l’ADN, dont la famille des protéines TALE (Three Amino acid Loop Extension), comme MEIS1 et PBX1. En utilisant une stratégie de surexpression combinée de Hoxb4 et d’un anti-sens de Pbx1 dans les CSH, générant ainsi des cellules Hoxb4hiPbx1lo, il est possible de majorer encore d’avantage leur potentiel d’AR et leur expansion in vitro. Les CSH Hoxb4hiPbx1lo demeurent fonctionnellement intactes malgré une modulation extrême de leur destin cellulaire en culture. Les niveaux d’expressions de facteurs nucléaires, seules ou en combinaison, peuvent donc s’avérer des déterminants majeurs du destin des CSH. Afin d’identifier d’autres facteurs nucléaires potentiellement impliqués dans le processus d’AR des CSH, une stratégie permettant d’évaluer simultanément plusieurs gènes candidats a été élaborée. Les progrès réalisés en termes de purification des CSH et de leur culture en micro-puits ont facilité la mise au point d’un crible en RNAi (interférence de l’ARN), mesurant l’impact fonctionnel d’une diminution des niveaux de transcrits d’un gène cible sur l’activité des CSH. Les candidats sélectionnés pour cette étude font partie du grand groupe des modificateurs de la chromatine, plus précisément la famille des histones déméthylases (HDM) contenant un domaine catalytique Jumonji. Ce choix repose sur la fonction régulatrice de plusieurs membres de complexes méthyl-transférases sur l’AR des CSH, dont l’histone méthyl-transférases MLL (Mixed Lineage Leukemia). Cette stratégie a aussi été utilisée dans le laboratoire pour étudier le rôle de facteurs d’asymétrie sur le destin des CSH, en collaboration. Ces études ont permis d’identifier à la fois des régulateurs positifs et négatifs de l’activité des CSH. Entre autre, une diminution de l’expression du gène codant pour JARID1B, une HDM de la lysine 4 de l’histone H3 (H3K4), augmente l’activité des CSH et s’accompagne d’une activation des gènes Hox. En conclusion, divers déterminants nucléaires, dont les facteurs de transcription et les modificateurs de la chromatine peuvent influencer le destin des CSH. Les mécanismes sous-jacents et l’identification d’autres modulateurs de l’AR demeurent des voies à explorer, pouvant contribuer éventuellement aux stratégies d’expansion des CSH ex vivo, et l’identification de cibles thérapeutiques contre les CSL. Mots-clés : cellules souches hématopoïétiques, Hoxb4, Pbx1, auto-renouvellement, histone déméthylases, RNAi

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'arthrose (OA) est une maladie articulaire dégénérative, classée comme la forme la plus fréquente au monde. Elle est caractérisée par la dégénérescence du cartilage articulaire, l’inflammation de la membrane synoviale, et le remodelage de l’os sous-chondral. Ces changements structurels et fonctionnels sont dues à de nombreux facteurs. Les cytokines, les prostaglandines (PG), et les espèces réactives de l'oxygène sont les principaux médiateurs impliqués dans la pathophysiologie de l'OA. L'interleukine-1β (IL-1β) est une cytokine pro-inflammatoire majeure qui joue un rôle crucial dans l'OA. L'IL-1β induit l'expression de la cyclooxygénase-2 (COX-2), la microsomale prostaglandine E synthase-1 (mPGES-1), la synthase inductible de l'oxyde nitrique (iNOS), ainsi que leurs produits la prostaglandine E2 (PGE2) et l'oxyde nitrique (NO). Ce sont des médiateurs essentiels de la réponse inflammatoire au cours de l'OA qui contribuent aux mécanismes des douleurs, de gonflement, et de destruction des tissus articulaires. Les modifications épigénétiques jouent un rôle très important dans la régulation de l’expression de ces gènes pro-inflammatoires. Parmi ces modifications, la méthylation/ déméthylation des histones joue un rôle critique dans la régulation des gènes. La méthylation/ déméthylation des histones est médiée par deux types d'enzymes: les histones méthyltransférases (HMT) et les histones déméthylases (HDM) qui favorisent l’activation et/ou la répression de la transcription. Il est donc nécessaire de comprendre les mécanismes moléculaires qui contrôlent l’expression des gènes de la COX-2, la mPGES-1, et l’iNOS. L'objectif de cette étude est de déterminer si la méthylation/déméthylation des histones contribute à la régulation de l’expression des gènes COX-2, mPGES-1, et iNOS dans des chondrocytes OA humains induits par l'IL-1β. Nous avons montré que la méthylation de la lysine K4 de l'histone H3 (H3K4) par SET-1A contribue à l’activation des gènes COX-2 et iNOS dans les chondrocytes humains OA induite par l'IL-1β. Nous avons également montré que la lysine K9 de l’histone H3 (H3K9) est déméthylée par LSD1, et que cette déméthylation contribue à l’expression de la mPGES-1 induite par IL-1β dans les chondrocytes humains OA. Nous avons aussi trouvé que les niveaux d'expression des enzymes SET-1A et LSD1 sont élevés au niveau du cartilage OA. Nos résultats montrent, pour la première fois, l'implication de la méthylation/ déméthylation des histones dans la régulation de l’expression des gènes COX-2, mPGES-1, et iNOS. Ces données suggèrent que ces mécanismes pourraient être une cible potentielle pour une intervention pharmacologique dans le traitement de la physiopathologie de l'OA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc1 strongly interacts with itself. Inactivation of either Bre2 or Sdc1 has very similar effects. Neither is required for complex integrity, and their removal results in an increase of H3K4 mono- and dimethylation and a severe decrease of trimethylation at the 5′ end of active coding regions but a decrease of H3K4 dimethylation at the 3′ end of coding regions. Cells lacking Spp1 have a reduced amount of Set1 and retain a fraction of trimethylated H3K4, whereas cells lacking Shg1 show slightly elevated levels of both di- and trimethylation. Set1C associates with both serine 5- and serine 2-phosphorylated forms of polymerase II, indicating that the association persists to the 3′ end of transcribed genes. Taken together, our results suggest that Set1C subunits stimulate Set1 catalytic activity all along active genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human DMD locus encodes dystrophin protein. Absence or reduced levels of dystrophin (DMD or BMD phenotype, respectively) lead to progressive muscle wasting. Little is known about the complex coordination of dystrophin expression and its transcriptional regulation is a field of intense interest. In this work we found that DMD locus harbours multiple long non coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. These lncRNAs are tissue-specific and highly expressed during myogenesis, suggesting a possible role in tissue-specific expression of DMD gene isoforms. Their forced ectopic expression in human muscle and neuronal cells leads to a specific and negative regulation of endogenous dystrophin full lenght isoforms. An intriguing aspect regarding the transcription of the DMD locus is the gene size (2.4Mb). The mechanism that ensures the complete synthesis of the primary transcript and the coordinated splicing of 79 exons is still completely unknown. By ChIP-on-chip analyses, we discovered novel regions never been involved before in the transcription regulation of the DMD locus. Specifically, we observed enrichments for Pol II, P-Ser2, P-Ser5, Ac-H3 and 2Me-H3K4 in an intronic region of 3Kb (approximately 21Kb) downstream of the end of DMD exon 52 and in a region of 4Kb spanning the DMD exon 62. Interestingly, this latter region and the TSS of Dp71 are strongly marked by 3Me-H3K36, an histone modification associated with the regulation of splicing process. Furthermore, we also observed strong presence of open chromatin marks (Ac-H3 and 2Me-H3K4) around intron 34 and the exon 45 without presence of RNA pol II. We speculate that these two regions may exert an enhancer-like function on Dp427m promoter, although further investigations are necessary. Finally, we investigated the nuclear-cytoplasmic compartmentalization of the muscular dystrophin mRNA and, specifically, we verified whether the exon skipping therapy could influence its cellular distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic genomes exist within a dynamic structure named chromatin in which DNA is wrapped around an octamer of histones forming the nucleosome. Histones are modified by a range of posttranslational modifications including methylation, phosphorylation, and ubiquitination, which are integral to a range of DNA-templated processes including transcriptional regulation. A hallmark for transcriptional activity is methylation of histone H3 on lysine (K) 4 within active gene promoters. In S. cerevisiae, H3K4 methylation is mediated by Set1 within the COMPASS complex. Methylation requires prior ubiquitination of histone H2BK123 by the E2-E3 ligases Rad6 and Bre1, as well as the Paf1 transcriptional elongation complex. This regulatory pathway exemplifies cross-talk in trans between posttranslational modifications on distinct histone molecules. Set1 has an additional substrate in the kinetochore protein Dam1, which is methylated on K233. This methylation antagonizes phosphorylation of adjacent serines by the Ipl1 Aurora kinase. The discovery of a second Set1 substrate raised the question of how Set1 function is regulated at the kinetochore. I hypothesized that transcriptional regulatory factors essential for H3K4 methylation at gene promoters might also regulate Set1-mediated methylation of Dam1K233. Here I show that the regulatory factors essential for COMPASS activity at gene promoters is also indispensable for the methylation of Dam1K233. Deletion of members of the COMPASS complex leads to loss of Dam1K233 methylation. In addition, deletion of Rad6, Bre1, or members of the Paf1 complex abolishes Dam1 methylation. The role of Rad6 and Bre1 in Dam1 methylation is dependent on H2BK123 ubiquitination, as mutation of K123 within H2B results in complete loss of Dam1 methylation. Importantly, methylation of Dam1K233 is independent of transcription and occurs at the kinetochore. My results demonstrate that Set1-mediated methylation is regulated by a general pathway regardless of substrate that is composed of transcriptional regulatory factors functioning independently of transcription at the kinetochore. My data provide the first example of cross-talk in trans between modifications on a histone and a non-histone protein. Additionally, my results indicate that several factors previously thought to be required for Set1 function at gene promoters are more generally required for the catalytic activity of the COMPASS complex regardless of substrate or cellular process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CpG island methylation within single gene promoters can silence expression of associated genes. We first extended these studies to bidirectional gene pairs controlled by single promoters. We showed that hypermethylation of bidirectional promoter-associated CpG island silences gene pairs (WNT9A/CD558500, CTDSPL/BC040563, and KCNK15/BF 195580) simultaneously. Hypomethylation of these promoters by 5-aza-2'-deoxycytidine treatment reactivated or enhanced gene expression bidirectionally. These results were further confirmed by luciferase assays. Methylation of WNT9A/CD558500 and CTDSPL/BC040563 promoters occurs frequently in primary colon cancers and acute lymphoid leukemia, respectively. ^ Next we sought to understand the origins of hypermethylation in cancer. CpG islands associated with tumor suppressor genes are normally free from methylation, but can be hypermethylated in cancer. It remains poorly understood how these genes are protected from methylation in normal tissues. In our studies, we aimed to determine if cis-acting elements in these genes are responsible for this protection, using the tumor suppressor gene p16 as a model. We found that Alu repeats located both upstream and downstream of the p16 promoter become hypermethylated with age. In colon cancer samples, the methylation level is particularly high, and the promoter can also be affected. Therefore, the protection in the promoter against methylation spreading could fail during tumorigenesis. This methylation pattern in p16 was also observed in cell lines of different tissue origins, and their methylation levels were found to be inversely correlated with that of active histone modification markers (H3K4-3me and H3K9-Ac). To identify the mechanism of protection against methylation spreading, we constructed serial deletions of the p16 protected region and used silencing of a neomycin reporter gene to evaluate the protective effects of these fragments. A 126 bp element was identified within the region which exerts bidirectional protection against DNA methylation, independently of its transcriptional activity. The protective strength of this element is comparable to that of the HS4 insulator. During long-term culture, the presence of this element significantly slowed methylation spreading. In conclusion, we have found that an element located in the p16 promoter is responsible for protection against DNA methylation spreading in normal tissues. The failure of protective cis-elements may be a general feature of tumor-suppressor gene silencing during tumorigenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation, I identify two molecular mechanisms by which transcription factors cooperate with their co-regulators to mediate gene regulation. In the first part, I demonstrate that p53 directly recruits LSD1, a histone demethylase, to AFP chromatin to demethylate methylated H3K4 and actively mediate transcription repression. Loss of p53 and LSD1 interaction at chromatin leads to derepression of AFP in hepatic cells. In the second part, I reveal that Trim24 functions as an important co-activator in ERα-mediated gene activation in response to estrogen stimulation. Trim24 is recruited by ligand-bound ERα to chromatin and stabilizes ERα-chromatin interactions by binding to histone H3 via its PHD finger, which preferentially recognizes unmethylated H3K4. ^