Transcriptional dynamics of the human DMD locus
Contribuinte(s) |
Perini, Giovanni |
---|---|
Data(s) |
07/04/2014
|
Resumo |
The human DMD locus encodes dystrophin protein. Absence or reduced levels of dystrophin (DMD or BMD phenotype, respectively) lead to progressive muscle wasting. Little is known about the complex coordination of dystrophin expression and its transcriptional regulation is a field of intense interest. In this work we found that DMD locus harbours multiple long non coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. These lncRNAs are tissue-specific and highly expressed during myogenesis, suggesting a possible role in tissue-specific expression of DMD gene isoforms. Their forced ectopic expression in human muscle and neuronal cells leads to a specific and negative regulation of endogenous dystrophin full lenght isoforms. An intriguing aspect regarding the transcription of the DMD locus is the gene size (2.4Mb). The mechanism that ensures the complete synthesis of the primary transcript and the coordinated splicing of 79 exons is still completely unknown. By ChIP-on-chip analyses, we discovered novel regions never been involved before in the transcription regulation of the DMD locus. Specifically, we observed enrichments for Pol II, P-Ser2, P-Ser5, Ac-H3 and 2Me-H3K4 in an intronic region of 3Kb (approximately 21Kb) downstream of the end of DMD exon 52 and in a region of 4Kb spanning the DMD exon 62. Interestingly, this latter region and the TSS of Dp71 are strongly marked by 3Me-H3K36, an histone modification associated with the regulation of splicing process. Furthermore, we also observed strong presence of open chromatin marks (Ac-H3 and 2Me-H3K4) around intron 34 and the exon 45 without presence of RNA pol II. We speculate that these two regions may exert an enhancer-like function on Dp427m promoter, although further investigations are necessary. Finally, we investigated the nuclear-cytoplasmic compartmentalization of the muscular dystrophin mRNA and, specifically, we verified whether the exon skipping therapy could influence its cellular distribution. |
Formato |
application/pdf |
Identificador |
http://amsdottorato.unibo.it/6498/3/Erriquez_Daniela_tesi.pdf urn:nbn:it:unibo-12761 Erriquez, Daniela (2014) Transcriptional dynamics of the human DMD locus, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biologia cellulare e molecolare <http://amsdottorato.unibo.it/view/dottorati/DOT496/>, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6498. |
Idioma(s) |
en |
Publicador |
Alma Mater Studiorum - Università di Bologna |
Relação |
http://amsdottorato.unibo.it/6498/ |
Direitos |
info:eu-repo/semantics/openAccess |
Palavras-Chave | #BIO/18 Genetica |
Tipo |
Tesi di dottorato NonPeerReviewed |