915 resultados para metallic conduction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrical and magnetical properties of LaSr(2-x)Ca(x)V3O9 +/- y have been investigated. The compounds are antiferromagnetic. They show a metallic conduction other than semiconductivity. The trivalent and tetravalent vanadium ions coexist in the system. The magnetic susceptibility increases and the resistivity decreases at room temperature with the increase of x value. It is shown that the change of the valency state of vanadium obviously influences the electrical and magnetical properties of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports on the measurements of transport properties of high crystalline quality Sn doped In2O3 nanobelts. The samples presented metallic conduction in a large range of temperatures; however, at low temperatures, the resistivity showed a slight increase and the current-voltage curves showed a tendency to saturate even in the low-voltage range. From these observations, we discuss some arguments on the possibility of low dimensional conducting channels as the main responsible for the conduction at low temperatures. Additionally, we present an alternative technique for production of low resistance ohmic contacts, which can be further used in devices' construction. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A filamentary model of “metallicconduction in layered high temperature superconductive cuprates explains the concurrence of normal state resistivities (Hall mobilities) linear in T (T−2) with optimized superconductivity. The model predicts the lowest temperature T0 for which linearity holds and it also predicts the maximum superconductive transition temperature Tc. The theory abandons the effective medium approximation that includes Fermi liquid as well as all other nonpercolative models in favor of countable smart basis states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current voltage characteristics ofo-tolidine-iodine, with stoichiometry 1:1 grown from benzene, have been studied under high pressures upto 6 GPa atT=300 K andT=77 K. The characteristics show a pronounced deviation from ohmicity beyond a certain current for all pressures studied. At room temperature, beyond a threshold field the system switches from a low conductingOFF state to a high conductingON state with σON/σOFF ∼ 103. TheOFF state can be restored by the application of an a.c. pulse of low frequency. The temperature dependence of the two states studied indicates that theOFF state is semiconducting while theON state, beyond a certain applied pressure is metallic. The characteristics atT=77 K do not show any switching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a systematic study of the electronic transport properties of the metallic perovskite oxide LaNiO3-delta as a function of the oxygen stoichiometry delta (delta less than or equal to 0.14). The electrical resistivity, magnetoresistance, susceptibility, Hall effect and thermopower have been studied, All of the transport coefficients are dependent on the value of delta. The resistivity increases almost exponentially as delta increases. We relate this increase in rho to the creation of Ni2+ with square-planar coordination. We find that there is a distinct T-1.5-contribution to the resistivity over the whole temperature range. The thermopower is negative, as expected for systems with electrons as the carrier, but the Hall coefficient is positive. We have given a qualitative and quantitative explanation for the different quantities observed and their systematic variation with the stoichiometry delta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical conductivity and thermopower are studied in the conducting polymer polypyrrole doped with varying levels of the dopant hexafluoro phosphate (PF6). A single sample is prepared by galvanostatic electrochemical polymerization at -40 degreesC. From this sample, six samples having different dopant levels and correspondingly different conductivity are prepared by dedoping. Low temperature d.c. electrical conductivity measurement shows the metal-insulator transition from fully doped sample to dedoped samples. On the metallic side the data are fitted to the localization-interaction model. In critical regime, it follows the power law. On the insulating side, it is variable range hopping. Thermopower measurements are done in the temperature range 300 K to 20 K. Thermopower is linear for samples on the metallic side and becomes more and more non-linear on the insulating side. It is described using a combination of the linear metallic term and the non-linear hopping term. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Au tipped ultranarrow PbS nanorods are synthesized. DFT electronic structure calculations and transport studies show that Au probes modify the nature and energies of PbS nanorod orbitals creating efficient electron conduction channels for enhanced conductance even at low applied bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molybdenum disulphide is a layered transition metal dichalcogenide that has recently raised considerable interest due to its unique semiconducting and opto-electronic properties. Although several theoretical studies have suggested an electronic phase transition in molybdenum disulphide, there has been a lack of experimental evidence. Here we report comprehensive studies on the pressure-dependent electronic, vibrational, optical and structural properties of multilayered molybdenum disulphide up to 35 GPa. Our experimental results reveal a structural lattice distortion followed by an electronic transition from a semiconducting to metallic state at similar to 19 GPa, which is confirmed by ab initio calculations. The metallization arises from the overlap of the valance and conduction bands owing to sulphur-sulphur interactions as the interlayer spacing reduces. The electronic transition affords modulation of the opto-electronic gain in molybdenum disulphide. This pressure-tuned behaviour can enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cox, S.J., Bradley, G. and Weaire, D. (2001) Metallic foam processing from the liquid state: the competition between solidification and drainage. Eur. Phys. J. AP 14:87-97. Sponsorship: This research was supported by the Prodex programme of ESA, and is a contribution to ESA contract C14308/AO-075-99. SJC was supported by Enterprise Ireland and a Marie Curie fellowship. GB was supported by the HPC Programme of TCD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments on Au break junctions [Phys. Rev. Lett. 88 (2002) 216803] have characterized the nonlinear conductance of stretched short Au nanowires. They reveal in the voltage range 10-20 meV the signatures of dissipation effects, likely due to phonons in the nanowire, reducing the conductance below the quantized value of 2e(2)/h. We present here a theory, based on a model tight-binding Hamiltonian and on non-equilibrium Green's function techniques, which accounts for the main features of the experiment. The theory helps in revealing details of the experiment which need to be addressed with a more realistic, less idealized, theoretical framework. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analysis of the transport of electric current in a jet of an electrically conducting liquid discharging from a metallic tube into a gas or a vacuum, and subject to an electric field due to a high voltage applied between the tube and a far electrode. The flow, the surface charge and the electric field are computed in the current transfer region of the jet, where conduction current in the liquid becomes surface current due to the convection of electric charge accumulated at its surface. The electric current computed as a function of the flow rate of the liquid injected through the tube increases first as the square root of this flow rate, levels to a nearly constant value when the flow rate is increased and finally sets to a linear increase when the flow rate is further increased. The current increases linearly with the applied voltage at small and moderate values of this variable, and faster than linearly at high voltages. The characteristic length and structure of the current transfer region are determined. Order-of-magnitude estimates for jets which are only weakly stretched by the electric stresses are worked out that qualitatively account for some of the numerical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies the adsorption of molecules with different binding strengths onto copper nanowires with prestabilized conductance values fabricated by an electrochemical method. Since the diameters of these wires are comparable to the wavelength of conduction electrons the conductance of the nanowires is quantized, and the adsorption of even a few molecules onto atomically thin wires changes the conductance from integer values to fractional ones. These changes are proportional to the binding strength of the adsorbed molecules. The decrease in conductance is hypothesized to be caused by the scattering of the conduction electrons by the adsorbed molecules. The sensitivity of molecular adsorption-induced conductance change can be used for the development of a chemical sensor. The stabilized copper nanowires obtained in this thesis may also be used for other purposes, such as interconnecting conductors between nanodevices and digital switches in functional nanoelectronic circuitry.