8 resultados para metallic conduction
em CaltechTHESIS
Resumo:
Metallic glasses have typically been treated as a “one size fits all” type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs.
Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing a 3.17 mm aluminum sphere at 2.7 km/s at it. The projectile penetrates the first two layers, but is successfully contained by the third.
A large series of metallic glass alloys are created and their wear loss is measured in a pin on disk test. Wear is found to vary dramatically among different metallic glasses, with some considerably outperforming the current state-of-the-art crystalline material (most notably Cu₄₃Zr₄₃Al₇Be₇). Others, on the other hand, suffered extensive wear loss. Commercially available Vitreloy 1 lost nearly three times as much mass in wear as alloy prepared in a laboratory setting. No conclusive correlations can be found between any set of mechanical properties (hardness, density, elastic, bulk, or shear modulus, Poisson’s ratio, frictional force, and run in time) and wear loss. Heat treatments are performed on Vitreloy 1 and Cu₄₃Zr₄₃Al₇Be₇. Anneals near the glass transition temperature are found to increase hardness slightly, but decrease wear loss significantly. Crystallization of both alloys leads to dramatic increases in wear resistance. Finally, wear tests under vacuum are performed on the two alloys above. Vitreloy 1 experiences a dramatic decrease in wear loss, while Cu₄₃Zr₄₃Al₇Be₇ has a moderate increase. Meanwhile, gears are fabricated through three techniques: electrical discharge machining of 1 cm by 3 mm cylinders, semisolid forging, and copper mold suction casting. Initial testing finds the pin on disk test to be an accurate predictor of wear performance in gears.
The final chapter explores an exciting technique in the field of additive manufacturing. Laser engineered net shaping (LENS) is a method whereby small amounts of metallic powders are melted by a laser such that shapes and designs can be built layer by layer into a final part. The technique is extended to mixing different powders during melting, so that compositional gradients can be created across a manufactured part. Two compositional gradients are fabricated and characterized. Ti 6Al¬ 4V to pure vanadium was chosen for its combination of high strength and light weight on one end, and high melting point on the other. It was inspected by cross-sectional x-ray diffraction, and only the anticipated phases were present. 304L stainless steel to Invar 36 was created in both pillar and as a radial gradient. It combines strength and weldability along with a zero coefficient of thermal expansion material. Only the austenite phase is found to be present via x-ray diffraction. Coefficient of thermal expansion is measured for four compositions, and it is found to be tunable depending on composition.
Resumo:
The electrical and magnetic properties of amorphous alloys obtained by rapid quenching from the liquid state have been studied. The composition of these alloys corresponds to the general formula MxPd80-xSi20, in which M stands for a metal of the first transition series between chromium and nickel and x is its atomic concentration. The concentration ranges within which an amorphous structure could be obtained were: from 0 to 7 for Cr, Mn and Fe, from 0 to 11 for Co and from 0 to 15 for Ni. A well-defined minimum in the resistivity vs temperature curve was observed for all alloys except those containing nickel. The alloys for which a resistivity minimum was observed had a negative magnetoresistivity approximately proportional to the square of the magnetization and their susceptibility obeyed the Curie-Weiss law in a wide temperature range. For concentrated Fe and Co alloys the resistivity minimum was found to coexist with ferromagnetism. These observations lead to the conclusion that the present results are due to a s-d exchange interaction. The unusually high resistivity minimum temperature observed in the Cr alloys is interpreted as a result of a high Kondo temperature and a large s-d exchange integral. A low Fermi energy of the amorphous alloys (3.5 eV) is also responsible for the anomalies due to the s-d exchange interaction.
Resumo:
Conduction through TiO2 films of thickness 100 to 450 Å have been investigated. The samples were prepared by either anodization of Ti evaporation of TiO2, with Au or Al evaporated for contacts. The anodized samples exhibited considerable hysteresis due to electrical forming, however it was possible to avoid this problem with the evaporated samples from which complete sets of experimental results were obtained and used in the analysis. Electrical measurements included: the dependence of current and capacitance on dc voltage and temperature; the dependence of capacitance and conductance on frequency and temperature; and transient measurements of current and capacitance. A thick (3000 Å) evaporated TiO2 film was used for measuring the dielectric constant (27.5) and the optical dispersion, the latter being similar to that for rutile. An electron transmission diffraction pattern of a evaporated film indicated an essentially amorphous structure with a short range order that could be related to rutile. Photoresponse measurements indicated the same band gap of about 3 ev for anodized and evaporated films and reduced rutile crystals and gave the barrier energies at the contacts.
The results are interpreted in a self consistent manner by considering the effect of a large impurity concentration in the films and a correspondingly large ionic space charge. The resulting potential profile in the oxide film leads to a thermally assisted tunneling process between the contacts and the interior of the oxide. A general relation is derived for the steady state current through structures of this kind. This in turn is expressed quantitatively for each of two possible limiting types of impurity distributions, where one type gives barriers of an exponential shape and leads to quantitative predictions in c lose agreement with the experimental results. For films somewhat greater than 100 Å, the theory is formulated essentially in terms of only the independently measured barrier energies and a characteristic parameter of the oxide that depends primarily on the maximum impurity concentration at the contacts. A single value of this parameter gives consistent agreement with the experimentally observed dependence of both current and capacitance on dc voltage and temperature, with the maximum impurity concentration found to be approximately the saturation concentration quoted for rutile. This explains the relative insensitivity of the electrical properties of the films on the exact conditions of formation.
Resumo:
An understanding of the mechanics of nanoscale metals and semiconductors is necessary for the safe and prolonged operation of nanostructured devices from transistors to nanowire- based solar cells to miniaturized electrodes. This is a fascinating but challenging pursuit because mechanical properties that are size-invariant in conventional materials, such as strength, ductility and fracture behavior, can depend critically on sample size when materials are reduced to sub- micron dimensions. In this thesis, the effect of nanoscale sample size, microstructure and structural geometry on mechanical strength, deformation and fracture are explored for several classes of solid materials. Nanocrystalline platinum nano-cylinders with diameters of 60 nm to 1 μm and 12 nm sized grains are fabricated and tested in compression. We find that nano-sized metals containing few grains weaken as sample diameter is reduced relative to grain size due to a change from deformation governed by internal grains to surface grain governed deformation. Fracture at the nanoscale is explored by performing in-situ SEM tension tests on nanocrystalline platinum and amorphous, metallic glass nano-cylinders containing purposely introduced structural flaws. It is found that failure location, mechanism and strength are determined by the stress concentration with the highest local stress whether this is at the structural flaw or a microstructural feature. Principles of nano-mechanics are used to design and test mechanically robust hierarchical nanostructures with structural and electrochemical applications. 2-photon lithography and electroplating are used to fabricate 3D solid Cu octet meso-lattices with micron- scale features that exhibit strength higher than that of bulk Cu. An in-situ SEM lithiation stage is developed and used to simultaneously examine morphological and electrochemical changes in Si-coated Cu meso-lattices that are of interest as high energy capacity electrodes for Li-ion batteries.
Resumo:
Bulk metallic glasses (BMGs) maybe be considered to share some of the same inherent trade-offs as engineering ceramics. While BMGs typically exhibit high yield strengths, and while some have surprising fracture toughness, they exhibiting little to no tensile ductility, and fail in a brittle manner under uniaxial loading. Speaking broadly, there are two complimentary approaches to improving on these shortcomings: 1) create bulk metallic glass matrix composites (BMGMCs) and 2) improve the properties of a monolithic BMG. The structure of this thesis mirrors this division, with chapters 2-7 focusing on creating and processing amorphous metal matrix composites, and chapter 8 focusing on modifying the properties of a monolithic BGM by altering its configurational state through irradiation.
Resumo:
Advances in nano-scale mechanical testing have brought about progress in the understanding of physical phenomena in materials and a measure of control in the fabrication of novel materials. In contrast to bulk materials that display size-invariant mechanical properties, sub-micron metallic samples show a critical dependence on sample size. The strength of nano-scale single crystalline metals is well-described by a power-law function, σαD-n, where D is a critical sample size and n is a experimentally-fit positive exponent. This relationship is attributed to source-driven plasticity and demonstrates a strengthening as the decreasing sample size begins to limit the size and number of dislocation sources. A full understanding of this size-dependence is complicated by the presence of microstructural features such as interfaces that can compete with the dominant dislocation-based deformation mechanisms. In this thesis, the effects of microstructural features such as grain boundaries and anisotropic crystallinity on nano-scale metals are investigated through uniaxial compression testing. We find that nano-sized Cu covered by a hard coating displays a Bauschinger effect and the emergence of this behavior can be explained through a simple dislocation-based analytic model. Al nano-pillars containing a single vertically-oriented coincident site lattice grain boundary are found to show similar deformation to single-crystalline nano-pillars with slip traces passing through the grain boundary. With increasing tilt angle of the grain boundary from the pillar axis, we observe a transition from dislocation-dominated deformation to grain boundary sliding. Crystallites are observed to shear along the grain boundary and molecular dynamics simulations reveal a mechanism of atomic migration that accommodates boundary sliding. We conclude with an analysis of the effects of inherent crystal anisotropy and alloying on the mechanical behavior of the Mg alloy, AZ31. Through comparison to pure Mg, we show that the size effect dominates the strength of samples below 10 μm, that differences in the size effect between hexagonal slip systems is due to the inherent crystal anisotropy, suggesting that the fundamental mechanism of the size effect in these slip systems is the same.
Resumo:
In recent years, the discovery of bulk metallic glasses with exceptional properties has generated much interest. One of their most intriguing features is their capacity for viscous flow above the glass transition temperature. This characteristic allows metallic glasses to be formed like plastics at modest temperatures. However, crystallization of supercooled metallic liquids in the best bulk metallic glass-formers is much more rapid than in most polymers and silicate glass-forming liquids. The short times to crystallization impairs experimentation on and processing of supercooled glass-forming metallic liquids. A technique to rapidly and uniformly heat metallic glasses at rates of 105 to 106 kelvin per second is presented. A capacitive discharge is used to ohmically heat metallic glasses to temperatures in the super cooled liquid region in millisecond time-scales. By heating samples rapidly, the most time-consuming step in experiments on supercooled metallic liquids is reduced orders of magnitude in length. This allows for experimentation on and processing of metallic liquids in temperature ranges that were previously inaccessible because of crystallization.
A variety of forming techniques, including injection molding and forging, were coupled with capacitive discharge heating to produce near net-shaped metallic glass parts. In addition, a new forming technique, which combines a magnetic field with the heating current to produce a forming force, was developed. Viscosities were measured in previously inaccessible temperature ranges using parallel plate rheometry combined with capacitive discharge heating. Lastly, a rapid pulse calorimeter was developed with this technique to investigate the thermophysical behavior of metallic glasses at these rapid heating rates.
Resumo:
Metallic glasses (MGs) are a relatively new class of materials discovered in 1960 and lauded for its high strengths and superior elastic properties. Three major obstacles prevent their widespread use as engineering materials for nanotechnology and industry: 1) their lack of plasticity mechanisms for deformation beyond the elastic limit, 2) their disordered atomic structure, which prevents effective study of their structure-to-property relationships, and 3) their poor glass forming ability, which limits bulk metallic glasses to sizes on the order of centimeters. We focused on understanding the first two major challenges by observing the mechanical properties of nanoscale metallic glasses in order to gain insight into its atomic-level structure and deformation mechanisms. We found that anomalous stable plastic flow emerges in room-temperature MGs at the nanoscale in wires as little as ~100 nanometers wide regardless of fabrication route (ion-irradiated or not). To circumvent experimental challenges in characterizing the atomic-level structure, extensive molecular dynamics simulations were conducted using approximated (embedded atom method) potentials to probe the underlying processes that give rise to plasticity in nanowires. Simulated results showed that mechanisms of relaxation via the sample free surfaces contribute to tensile ductility in these nanowires. Continuing with characterizing nanoscale properties, we studied the fracture properties of nano-notched MGnanowires and the compressive response of MG nanolattices at cryogenic (~130 K) temperatures. We learned from these experiments that nanowires are sensitive to flaws when the (amorphous) microstructure does not contribute stress concentrations, and that nano-architected structures with MG nanoribbons are brittle at low temperatures except when elastic shell buckling mechanisms dominate at low ribbon thicknesses (~20 nm), which instead gives rise to fully recoverable nanostructures regardless of temperature. Finally, motivated by understanding structure-to-property relationships in MGs, we studied the disordered atomic structure using a combination of in-situ X-ray tomography and X-ray diffraction in a diamond anvil cell and molecular dynamics simulations. Synchrotron X-ray experiments showed the progression of the atomic-level structure (in momentum space) and macroscale volume under increasing hydrostatic pressures. Corresponding simulations provided information on the real space structure, and we found that the samples displayed fractal scaling (rd ∝ V, d < 3) at short length scales (< ~8 Å), and exhibited a crossover to a homogeneous scaling (d = 3) at long length scales. We examined this underlying fractal structure of MGs with parallels to percolation clusters and discuss the implications of this structural analogy to MG properties and the glass transition phenomenon.