979 resultados para membrane lipids
Resumo:
We observed significant changes in the elemental and intact polar lipid (IPL) composition of the archaeon Thermococcus kodakarensis (KOD1) in response to growth stage and phosphorus supply. Reducing the amount of organic supplements and phosphate in growth media resulted in significant decreases in cell size and cellular quotas of carbon (C), nitrogen (N), and phosphorus (P), which coincided with significant increases in cellular IPL quota and IPLs comprising multiple P atoms and hexose moieties. Relatively more cellular P was stored as IPLs in P-limited cells (2-8%) compared to control cells (<0.8%). We also identified a specific IPL biomarker containing a phosphatidyl-N-acetylhexoseamine headgroup that was relatively enriched during rapid cell division. These observations serve as empirical evidence of IPL adaptations in Archaea that will help to interpret the distribution of these biomarkers in natural systems. The reported cell quotas of C, N, and P represent the first such data for a specific archaeon and suggest that thermophiles are C-rich compared to the cell carbon-to-volume relationship reported for planktonic bacteria.
Resumo:
Using tobacco plants that had been transformed with the cDNA for glycerol-3-phosphate acyltransferase, we have demonstrated that chilling tolerance is affected by the levels of unsaturated membrane lipids. In the present study, we examined the effects of the transformation of tobacco plants with cDNA for glycerol-3-phosphate acyltransferase from squash on the unsaturation of fatty acids in thylakoid membrane lipids and the response of photosynthesis to various temperatures. Of the four major lipid classes isolated from the thylakoid membranes, phosphatidylglycerol showed the most conspicuous decrease in the level of unsaturation in the transformed plants. The isolated thylakoid membranes from wild-type and transgenic plants did not significantly differ from each other in terms of the sensitivity of photosystem II to high and low temperatures and also to photoinhibition. However, leaves of the transformed plants were more sensitive to photoinhibition than those of wild-type plants. Moreover, the recovery of photosynthesis from photoinhibition in leaves of wild-type plants was faster than that in leaves of the transgenic tobacco plants. These results suggest that unsaturation of fatty acids of phosphatidylglycerol in thylakoid membranes stabilizes the photosynthetic machinery against low-temperature photoinhibition by accelerating the recovery of the photosystem II protein complex.
Resumo:
The composition and condition of membrane lipids, the morphology of erythrocytes, and hemoglobin distribution were explored with the help of laser interference microscopy (LIM) and Raman spectroscopy. It is shown that patients with cardiovascular diseases (CVD) have significant changes in the composition of their phospholipids and the fatty acids of membrane lipids. Furthermore, the microviscosity of the membranes and morphology of the erythrocytes are altered causing disordered oxygen transport by hemoglobin. Basic therapy carried out with the use of antiaggregants, statins, antianginals, beta-blockers, and calcium antagonists does not help to recover themorphofunctional properties of erythrocytes. Based on the results the authors assume that, for the relief of the ischemic crisis and further therapeutic treatment, it is necessary to include, in addition to cardiovascular disease medicines, medication that increases the ability of erythrocytes’ hemoglobin to transport oxygen to the tissues. We assume that the use of LIM and Raman spectroscopy is advisable for early diagnosis of changes in the structure and functional state of erythrocytes when cardiovascular diseases develop.
Resumo:
Sec1/Munc18 (SM) protein family members are evolutionary conserved proteins. They perform an essential, albeit poorly understood function in SNARE complex formation in membrane fusion. In addition to the SNARE complex components, only a few SM protein binding proteins are known. Typically, their binding modes to SM proteins and their contribution to the membrane fusion regulation is poorly characterised. We identified Mso1p as a novel Sec1p interacting partner. It was shown that Mso1p and Sec1p interact at sites of polarised secretion and that this localisation is dependent on the Rab GTPase Sec4p and its GEF Sec2p. Using targeted mutagenesis and N- and C-terminal deletants, it was discovered that the interaction between an N-terminal peptide of Mso1p and the putative Syntaxin N-peptide binding area in Sec1p domain 1 is important for membrane fusion regulation. The yeast Syntaxin homologues Sso1p and Sso2p lack the N-terminal peptide. Our results show that in addition to binding to the putative N-peptide binding area in Sec1p, Mso1p can interact with Sso1p and Sso2p. This result suggests that Mso1p can mimic the N-peptide binding to facilitate membrane fusion. In addition to Mso1p, a novel role in membrane fusion regulation was revealed for the Sec1p C-terminal tail, which is missing in its mammalian homologues. Deletion of the Sec1p-tail results in temperature sensitive growth and reduced sporulation. Using in vivo and in vitro experiments, it was shown that the Sec1p-tail mediates SNARE complex binding and assembly. These results propose a regulatory role for the Sec1p-tail in SNARE complex formation. Furthermore, two novel interaction partners for Mso1p, the Rab GTPase Sec4p and plasma membrane phospholipids, were identified. The Sec4p link was identified using Bimolecular Fluorescence Complementation assays with Mso1p and the non-SNARE binding Sec1p(1-657). The assay revealed that Mso1p can target Sec1p(1-657) to sites of secretion. This effect is mediated via the Mso1p C-terminus, which previously has been genetically linked to Sec4p. These results and in vitro binding experiments suggest that Mso1p acts in cooperation with the GTP-bound form of Sec4p on vesicle-like structures prior to membrane fusion. Mso1p shares homology with the PIP2 binding domain of the mammalian Munc18 binding Mint proteins. It was shown both in vivo and in vitro that Mso1p is a phospholipid inserting protein and that this insertion is mediated by the conserved Mso1p amino terminus. In vivo, the Mso1p phospholipid binding is needed for sporulation and Mso1p-Sec1p localisation at the sites of secretion at the plasma membrane. The results reveal a novel layer of membrane fusion regulation in exocytosis and propose a coordinating role for Mso1p in connection with membrane lipids, Sec1p, Sec4p and SNARE complexes in this process.
Resumo:
11 p.
Resumo:
examined in Choanephora cucurbita rum during the early stages of infection by Piptocephalis virginiana » There was a small but consistent increase in the leakage of electrolytes, amino acids and sugars as a result of infection. These low levels of differential leakage in infected tissues are explained on the basis of the nature of this obligate, biotrophic, mycoparasitic system. Quantitative analysis of the twenty six amino acids and amino compounds detected in the leacheates — showed similar profiles in infected and control host and no new species of amino acids or amino compounds were detected in either infected or control host leacheates. Comparatively high amounts of aspartic acid, glutamic acid and alanine were found in the leacheates of host and infected host . Analyses of the sugars comprising the leacheates of infected and control host showed the presence of eight sugars, among which glucose was found in significant amounts (50-53%) ' The nutritional implication of this preferential leakage is discussed. No significant difference was observed in the leacheates of infected host sugar profiles compared with that of the control host. Profiles of the internal pool sugars of infected and control host did not reflect that obtained from the leacheate data, perhaps owing to leakage of sugars in a selective manner . Membrane lipid analyses yielded higher levels of lipid in infected host compared with the control, both at the 24 h and 36 h analyses. In addition, preliminary investigations of phosphorous-32 incorporation and turnover in phospholipids showed higher levels of 32p incorporation and turnover in infected host compared with the control. No apparent difference was noted in the profiles of the neutral lipid classes and the polar lipid classes of the membrane lipids as determined by one and two dimensional thin-layer chromatography respectively. However, a small but consistently higher degree of unsaturation was detected in the fatty acids of infected tissue compared with the control. Also, '^''-^^''^^'-'-^'^^c acid, a polyunsaturated fatty acid previously reported to show a direct correlation during the early stages of infection and the degree of parasitism of P. virginiana on C. cucurbitarum , was found in higher amounts in infected host membrane lipids compared with that of the control host. The implications of these membrane lipid alterations are discussed with particular reference to the small but consistently higher leakage of electrolytes, amino acids and sugars observed during infection in this study.
Resumo:
The N-terminus of the human dihydroorotate dehydrogenase (HsDHODH) has been described as important for the enzyme attachment in the inner mitochondrial membrane and possibly to regulate enzymatic activity. In this study, we synthesized the peptide acetyl-GDERFYAEHLMPTLQGLLDPESAHRL AVRFTSLGamide, comprising the residues 33-66 of HsDHODH N-terminal conserved microdomain. Langmuir monolayers and circular dichroism (CD) were employed to investigate the interactions between the peptide and membrane model, as micelles and monolayers of the lipids phosphatidylcholine (PC), 3-phosphatidylethanolamine (PE) and cardiolipin (CL). These lipids represent the major constituents of inner mitochondrial membranes. According to CD data, the peptide adopted a random structure in water, whereas it acquired α-helical structures in the presence of micelles. The π–A isotherms and polarization- modulated infrared reflection-absorption spectroscopy on monolayers showed that the peptide interacted with all lipids, but in different ways. In DPPC monolayers, the peptide penetrated into the hydrophobic region. The strongest initial interaction occurred with DPPE, but the peptide was expelled from this monolayer at high surface pressures. In CL, the peptide could induce a partial dissolution of the monolayer, leading to shorter areas at the monolayer collapse. These results corroborate the literature, where the HsDHODH microdomain is anchored into the inner mitochondrial membrane. Moreover, the existence of distinct conformations and interactions with the different membrane lipids indicates that the access to the enzyme active site may be controlled not only by conformational changes occurring at the microdomain of the protein, but also by some lipid-protein synergetic mechanism, where the HsDHODH peptide would be able to recognize lipid domains in the membrane. - See more at: http://www.eurekaselect.com/122062/article#sthash.1ZZbc7E0.dpuf
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Resumo:
Lipids serve important functions as membrane constituents and also as energy storing molecules. Besides these functions certain lipid species have now been recognized as signalling molecules that regulate a multitude of cellular responses including cell growth and death, and also inflammatory reactions. Bioactive lipids are generated by hydrolysis from membrane lipids mainly by phospholipases giving rise to fatty acids and lysophospholipids that either directly exert their function or are further converted to active mediators. This review will summarize the present knowledge about bioactive lipids that either promote or attenuate inflammatory reactions. These lipids include polyunsaturated fatty acids (PUFA), eicosanoids including the epoxyeicosatrienoic acids (EET), peroxisome proliferation activating receptor (PPAR) activators, cannabinoids and the sphingolipids ceramide, sphingosine 1-phosphate and sphingosylphosphorylcholine.