26 resultados para megavoltage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The motivation for developing megavoltage (and kilovoltage) cone beam CT (MV CBCT) capabilities in the radiotherapy treatment room was primarily based on the need to improve patient set-up accuracy. There has recently been an interest in using the cone beam CT data for treatment planning. Accurate treatment planning, however, requires knowledge of the electron density of the tissues receiving radiation in order to calculate dose distributions. This is obtained from CT, utilising a conversion between CT number and electron density of various tissues. The use of MV CBCT has particular advantages compared to treatment planning with kilovoltage CT in the presence of high atomic number materials and requires the conversion of pixel values from the image sets to electron density. Therefore, a study was undertaken to characterise the pixel value to electron density relationship for the Siemens MV CBCT system, MVision, and determine the effect, if any, of differing the number of monitor units used for acquisition. If a significant difference with number of monitor units was seen then pixel value to ED conversions may be required for each of the clinical settings. The calibration of the MV CT images for electron density offers the possibility for a daily recalculation of the dose distribution and the introduction of new adaptive radiotherapy treatment strategies. Methods: A Gammex Electron Density CT Phantom was imaged with the MVCB CT system. The pixel value for each of the sixteen inserts, which ranged from 0.292 to 1.707 relative electron density to the background solid water, was determined by taking the mean value from within a region of interest centred on the insert, over 5 slices within the centre of the phantom. These results were averaged and plotted against the relative electron densities of each insert with a linear least squares fit was preformed. This procedure was performed for images acquired with 5, 8, 15 and 60 monitor units. Results: The linear relationship between MVCT pixel value and ED was demonstrated for all monitor unit settings and over a range of electron densities. The number of monitor units utilised was found to have no significant impact on this relationship. Discussion: It was found that the number of MU utilised does not significantly alter the pixel value obtained for different ED materials. However, to ensure the most accurate and reproducible MV to ED calibration, one MU setting should be chosen and used routinely. To ensure accuracy for the clinical situation this MU setting should correspond to that which is used clinically. If more than one MU setting is used clinically then an average of the CT values acquired with different numbers of MU could be utilized without loss in accuracy. Conclusions: No significant differences have been shown between the pixel value to ED conversion for the Siemens MV CT cone beam unit with change in monitor units. Thus as single conversion curve could be utilised for MV CT treatment planning. To fully utilise MV CT imaging for radiotherapy treatment planning further work will be undertaken to ensure all corrections have been made and dose calculations verified. These dose calculations may be either for treatment planning purposes or for reconstructing the delivered dose distribution from transit dosimetry measurements made using electronic portal imaging devices. This will potentially allow the cumulative dose distribution to be determined through the patient’s multi-fraction treatment and adaptive treatment strategies developed to optimize the tumour response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accuracy of dose delivery in external beam radiotherapy is usually verified with electronic portal imaging (EPI) in which the treatment beam is used to check the positioning of the patient. However the resulting megavoltage x-ray images suffer from poor quality. The image quality can be improved by developing a special operating mode in the linear accelerator. The existing treatment beam is modified such that it produces enough low-energy photons for imaging. In this work the problem of optimizing the beam/detector combination to achieve optimal electronic portal image quality is addressed. The linac used for this study was modified to produce two experimental photon beams. These beams, named Al6 and Al10, were non-flat and were produced by 4MeV electrons hitting aluminum targets, 6 and 10mm thick respectively. The images produced by a conventional EPI system (6MV treatment beam and camera-based EPID with a Cu plate & Gd2O2S screen ) were compared with the images produced by the experimental beams and various screens with the same camera). The contrast of 0.8cm bone equivalent material in 5 cm water increased from 1.5% for the conventional system to 11% for the combination of Al6 beam with a 200mg/cm2 Gd2O2S screen. The signal-to-noise ratio calculated for 1cGy flood field images increased by about a factor of two for the same EPI systems. The spatial resolution of the two imaging systems was comparable. This work demonstrates that significant improvements in portal image contrast can be obtained by simultaneous optimization of the linac spectrum and EPI detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to increase the accuracy of patient positioning for complex radiotherapy treatments various 3D imaging techniques have been developed. MegaVoltage Cone Beam CT (MVCBCT) can utilise existing hardware to implement a 3D imaging modality to aid patient positioning. MVCBCT has been investigated using an unmodified Elekta Precise linac and 15 iView amorphous silicon electronic portal imaging device (EPID). Two methods of delivery and acquisition have been investigated for imaging an anthropomorphic head phantom and quality assurance phantom. Phantom projections were successfully acquired and CT datasets reconstructed using both acquisition methods. Bone, tissue and air were 20 clearly resolvable in both phantoms even with low dose (22 MU) scans. The feasibility of MegaVoltage Cone beam CT was investigated using a standard linac, amorphous silicon EPID and a combination of a free open source reconstruction toolkit as well as custom in-house software written in Matlab. The resultant image quality has 25 been assessed and presented. Although bone, tissue and air were resolvable 2 in all scans, artifacts are present and scan doses are increased when compared with standard portal imaging. The feasibility of MVCBCT with unmodified Elekta Precise linac and EPID has been considered as well as the identification of possible areas for future development in artifact correction techniques to 30 further improve image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate patient positioning is vital for improved clinical outcomes for cancer treatments using radiotherapy. This project has developed Mega Voltage Cone Beam CT using a standard medical linear accelerator to allow 3D imaging of the patient position at treatment time with no additional hardware required. Providing 3D imaging functionality at no further cost allows enhanced patient position verification on older linear accelerators and in developing countries where access to new technology is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyondd max and to find ways to mitigate this dependence for measurements in phantoms. Methods Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor) in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam (“edge on,” 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. Results For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al2O3) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusions The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinicalin vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dose received by anatomical structures which are apparently shielded by lead blocks during a course of megavoltage radiotherapy may not be negligible. The dose has three main components; there is that due to radiation transmitted through the shielding block, that due to radiation scattered within the patient and that due to radiation scattered prior to reaching the patient and so circumventing the shield. A calculation method which separates the three components has been investigated and the results have been compared with measurements in a wide range of test situations for both cobalt-60 and 6 MV photon beams. The method of calculation predicts the dose behind the shielding block with acceptable accuracy in all the conditions investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where gold's relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the effect of pre-treatment verification imaging with megavoltage (MV) X-rays on cancer and normal cell survival in vitro and to compare the findings with theoretically modelled data. Since the dose received from pre-treatment imaging can be significant, incorporation of this dose at the planning stage of treatment has been suggested.

Methods: The impact of imaging dose incorporation on cell survival was investigated by clonogenic assay, irradiating DU-145 prostate cancer, H460 non-small cell lung cancer and AGO-1522b normal tissue fibroblast cells. Clinically relevant imaging-to-treatment times of 7.5 minutes and 15 minutes were chosen for this study. The theoretical magnitude of the loss of radiobiological efficacy due to sublethal damage repair was investigated using the Lea-Catcheside dose protraction factor model.

Results: For the cell lines investigated, the experimental data showed that imaging dose incorporation had no significant impact upon cell survival. These findings were in close agreement with the theoretical results.

Conclusions: For the conditions investigated, the results suggest that allowance for the imaging dose at the planning stage of treatment should not adversely affect treatment efficacy.

Advances in Knowledge: There is a paucity of data in the literature on imaging effects in radiotherapy. This paper presents a systematic study of imaging dose effects on cancer and normal cell survival, providing both theoretical and experimental evidence for clinically relevant imaging doses and imaging-to-treatment times. The data provide a firm foundation for further study into this highly relevant area of research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 µm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 µm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanoparticles (GNPs) have shown potential to be used as a radiosensitizer for radiation therapy. Despite extensive research activity to study GNP radiosensitization using photon beams, only a few studies have been carried out using proton beams. In this work Monte Carlo simulations were used to assess the dose enhancement of GNPs for proton therapy. The enhancement effect was compared between a clinical proton spectrum, a clinical 6 MV photon spectrum, and a kilovoltage photon source similar to those used in many radiobiology lab settings. We showed that the mechanism by which GNPs can lead to dose enhancements in radiation therapy differs when comparing photon and proton radiation. The GNP dose enhancement using protons can be up to 14 and is independent of proton energy, while the dose enhancement is highly dependent on the photon energy used. For the same amount of energy absorbed in the GNP, interactions with protons, kVp photons and MV photons produce similar doses within several nanometers of the GNP surface, and differences are below 15% for the first 10 nm. However, secondary electrons produced by kilovoltage photons have the longest range in water as compared to protons and MV photons, e.g. they cause a dose enhancement 20 times higher than the one caused by protons 10 μm away from the GNP surface. We conclude that GNPs have the potential to enhance radiation therapy depending on the type of radiation source. Proton therapy can be enhanced significantly only if the GNPs are in close proximity to the biological target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the feasibility of difference imaging for improving the contrast of electronic portal imaging device (EPID) images is investigated. The difference imaging technique consists of the acquisition of two EPID images (with and without the placement of an additional layer of attenuating medium on the surface of the EPID)and the subtraction of one of these images from the other. The resulting difference image shows improved contrast, compared to a standard EPID image, since it is generated by lower-energy photons. Results of this study show that, ¯rstly, this method can produce images exhibiting greater contrast than is seen in standard megavoltage EPID images and that, secondly, the optimal thickness of attenuating material for producing a maximum contrast enhancement may vary with phantom thickness and composition. Further studies of the possibilities and limitations of the di®erence imaging technique, and the physics behind it, are therefore recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.