976 resultados para mated queen
Resumo:
Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h(2)=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.
Resumo:
In many insect societies, workers can manipulate the reproductive output of their colony by killing kin of lesser value to them. For instance, workers of the mound-building For mica exsecta eliminate male brood in colonies headed by a single-mated queen. By combining an inclusive fitness model and empirical data, we investigated the selective causes underlying these fratricides. Our model examines until which threshold stage in male brood development do the workers benefit from eliminating males to rear extra females instead. We then determined the minimal developmental stage reached by male larvae before elimination in F. exsecta field colonies. Surprisingly, many male larvae were kept until they were close to pupation, and only then eliminated. According to our model, part of the eliminated males were so large that workers would not benefit from replacing them with new females. Moreover, males were eliminated late in the season, so that new females could no longer be initiated, because matings take place synchronously during a short period. Together, these results indicate that workers did not replace male brood with new females, but rather reduced total brood size during late larval development. Male destruction was probably triggered by resource limitation, and the timing of brood elimination suggests that males may have been fed to females when these start to grow exponentially during the final larval stage. Hence, the evolution of fratricides in ants is best explained by a combination of ecological, demographic and genetic parameters.
Resumo:
We study male parentage and between-colony variation in sex allocation and sexual production in the desert ant Crematogaster smithi, which usually has only one singly-mated queen per nest. Colonies of this species are known to temporarily store nutrients in the large fat body of intermorphs, a specialized female caste intermediate in morphology between queens and workers. Intermorphs repackage at least part of this fat into consumable but viable male-destined eggs. If these eggs sometimes develop instead of being eaten, intermorphs will be reproductive competitors of the queen but-due to relatedness asymmetries-allies of their sister worker. Using genetic markers we found a considerable proportion of non-queen sons in some, but not all, colonies. Even though intermorphs produce ∼1.7× more eggs than workers, their share in the parentage of adult males is estimated to be negligible due to their small number compared to workers. Furthermore, neither colony-level sex allocation nor overall sexual production was correlated with intermorph occurrence or number. We conclude that intermorph-laid eggs typically do not survive and that the storage of nutrients and their redistribution as eggs by intermorphs is effectively altruistic.
Resumo:
Variable queen mating frequencies provide a unique opportunity to study the resolution of worker-queen conflict over sex ratio in social Hymenoptera, because the conflict is maximal in colonies headed by a singly mated queen and is weak or nonexistent in colonies headed by a multiply mated queen. In the wood ant Formica exsecta, workers in colonies with a singly mated queen, but not those in colonies with a multiply mated queen, altered the sex ratio of queen-laid eggs by eliminating males to preferentially raise queens. By this conditional response to queen mating frequency, workers enhance their inclusive fitness.
Resumo:
The venom gland of queens of Apis mellifera was examined through light and transmission electron microscopy and subjected to electrophoretic analyses. Virgin queens exhibited prismatic secretory cells containing large amounts of rough endoplasmic reticulum with dilated cisternae, open secretory spaces, numerous vacuoles and granules scattered in the cytoplasm, and spherical nuclei with numerous nucleoli. The secretion produced was non-refringent under polarized light and the electrophoretic analysis of glandular extracts revealed five main protein bands. In mated queens, the venom gland exhibited a high degree of degeneration. Its secretion was refringent under polarized light and one of the main bands was absent in the electrophoretic pattern obtained. The morphological aspects observed are in agreement with the function of this gland in queens, given that virgin queens use venom in battles for the dominance of the colony, a situation that occurs as soon as they emerge, while fertilized queens rarely use venom. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The present results show that in the ovarioles of a newly emerged (0 day) queen of A. mellifera only two regions may be distinguished: a proximal, short germarium and a very long distal, terminal filament. As the queen matures and gets ready for the nupcial flight, the germarium increases in lenght, advancing towered the distal end, as the terminal filament shortens. The ovarioles of queens ready to mate (6 to 8 days old) have, already one or two ovarian follicles, i.e. a very short proximal vitellarium, but a real vitellogenesis only starts after the fecundation. If the queen does not mate the ovarioles structure is disrupted (12-16 days old). In mated queen eggs the ovarioles present three differentiated regions, from the apice to the basis: a short terminal filament, a medium size germarium, and a very long basal vitellarium. As the eggs are laid, the emptied follicle collapses, degenerates and produces a corpus luteum.
Resumo:
The acceptance of new queens in ant colonies has profound effects on colony kin structure and inclusive fitness of workers. Therefore, it is important to study the recognition and discrimination behaviour of workers towards reproductive individuals entering established colonies. We examined the acceptance rate of queens in populations of the highly polygynous ant F. paralugubris, where the genetic differentiation among nests and discrimination ability among workers suggest that workers might reject foreign queens. We experimentally introduced young queens in their natal nest and in foreign nests. Surprisingly, the survival rate of mated queens did not differ significantly when introduced in a foreign male-producing nest, a foreign female-producing nest, or the natal nest. Moreover, the survival of virgin queens in their natal nest was twice the one of mated queens, suggesting that mating status plays an important role for acceptance. The results indicate that other factors than queen discrimination by workers are implicated in the limited long-distance gene flow between nests in these populations.
Resumo:
The development of queen and worker phenotypes in ants has been believed to be largely determined from environmental effects. We provide evidence that the production of discrete phenotypes is also influenced by genetic interaction effects. During the development of eggs into adults, some patrilines among offspring of multiply mated Pogonomyrmex rugosus ant queens became more common in workers while others became overrepresented in queens. Controlled crosses showed that these changes stem from some parental genome combinations being compatible for producing one phenotype but less compatible for the other. Genetic interaction effects on caste may be maintained over evolutionary time because the fitness of an allele depends on its genetic background.
Resumo:
A central question in social evolution is what processes regulate the number of breeders in each social group. Here, we tested whether differences in the rate of acceptance of new queens by resident workers could be a proximate cause explaining the coexistence of single- and multiple-queen colonies in an ant population. We found that Formica selysi workers discriminated against foreign (non-nestmate) queens, which contributes to maintaining the genetic integrity of the social group essential to kin selection. All the young and newly mated foreign queens introduced into experimental groups of workers died within 48 h. In contrast, workers frequently accepted young newly mated nestmate queens. The survival of nestmate queens was not significantly lower in groups of workers originating from single- queen colonies than in groups of workers originating from multiple-queen colonies. Finally, virgin queens had significantly higher survival than mated queens. Together, these results show that the maintenance of single-queen and multiple-queen colonies in the same population is unlikely to be caused by strong differences between the two types of colonies in their rate of acceptance of new queens by workers. They also suggest that the discrimination of queens by resident workers restricts the dispersal of foreign queens among colonies, but not the acceptance of additional nestmate queens.
Resumo:
Environmental factors and management techniques were evaluated in São Paulo, Brazil, for enhanced production of Africanized queen honey bees. Queens were reared by the Doolittle method; 12 breeder, 6 cell-builder, and 36 3-frame nucleus colonies were used. Nine groups of four virgin Africanized queen honey bees were subjected to the following treatments: queens were either 1-2, 3-4 or 5-6 days old and were released into mating nuclei containing either capped brood, uncapped brood or no brood. This was repeated sixteen times between August 1990 and August 1992. Seven repetitions occurred during nectar flow periods and nine repetitions occurred during nectar-dearth periods. Overall, 59% of 576 queens were successfully introduced and mated. The best results (93% success) were obtained during nectar flows, with 3- to 4-day-old queens released into nuclei containing capped brood. During nectar dearths the best mating success came from queens introduced into broodless nuclei (63%), the age of the queen did not influence mating success. Mating success decreased when wind velocity increased; this was the only significant meteorological effect found.
Resumo:
The life history of Harpegnathos saltator is exceptional among ants because both queens and workers reproduce sexually. Recently mated queens start new colonies alone, but later some of the offspring workers also become inseminated and take over the egg-laying role. This alternation seems associated with the existence of very complex underground nests, which are designed to survive floods. Longevity of ponerine queens is low (a consequence of limited caste dimorphism in this "primitive" subfamily), and upon the death of an H. saltator foundress, the nest represents a substantial investment. The queen's progeny should thus be strongly selected to retain the valuable nests. Unlike the flying queens, the workers copulate with males from their own colonies, and, thus, their offspring are expected to be highly related to the foundress. Colony fission appears not to occur because a daughter fragment would lack an adequate nest for protection. Thus, the annual production of queens in colonies with reproductive workers remains essential for the establishment of new colonies. This contrasts with various other ponerine species in which the queens no longer exist.
Resumo:
We evaluated the ratio between the number of pollen foragers and the total number of bees entering colonies of Melipona bicolor, a facultative polygynous species of stingless bees. The variables considered in our analysis were: seasonality, colony size and the number of physogastric queens in each colony. The pollen forager ratios varied significantly between seasons; the ratio was higher in winter than in summer. However, colony size and number of queens per colony had no significant effect. We conclude that seasonal differences in pollen harvest are related to the production of sexuals and to the number of individuals and their body size.
Resumo:
Insect societies are well known for their high degree of cooperation, but their colonies can potentially be exploited by reproductive workers who lay unfertilized, male eggs, rather than work for the good of the colony. Recently, it has also been discovered that workers in bumblebees and Asian honeybees can succeed in entering and parasitizing unrelated colonies to produce their own male offspring. The aim of this study was to investigate whether such intraspecific worker parasitism might also occur in stingless bees, another group of highly social bees. Based on a large-scale genetic study of the species Melipona scutellaris, and the genotyping of nearly 600 males from 45 colonies, we show that similar to 20% of all males are workers` sons, but that around 80% of these had genotypes that were incompatible with them being the sons of workers of the resident queen. By tracking colonies over multiple generations, we show that these males were not produced by drifted workers, but rather by workers that were the offspring of a previous, superseded queen. This means that uniquely, workers reproductively parasitize the next-generation workforce. Our results are surprising given that most colonies were sampled many months after the previous queen had died and that workers normally only have a life expectancy of similar to 30 days. It also implies that reproductive workers greatly outlive all other workers. We explain our results in the context of kin selection theory, and the fact that it pays workers more from exploiting the colony if costs are carried by less related individuals.
Resumo:
Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intra-specific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests.