960 resultados para map-based cloning
Resumo:
Introgression in Festulolium is a potentially powerful tool to isolate genes for a large number of traits which differ between Festuca pratensis Huds. and Lolium perenne L. Not only are hybrids between the two species fertile, but the two genomes can be distinguished by genomic in situ hybridisation and a high frequency of recombination occurs between homoeologous chromosomes and chromosome segments. By a programme of introgression and a series of backcrosses, L. perenne lines have been produced which contain small F. pratensis substitutions. This material is a rich source of polymorphic markers targeted towards any trait carried on the F. pratensis substitution not observed in the L. perenne background. We describe here the construction of an F. pratensis BAC library, which establishes the basis of a map-based cloning strategy in L. perenne. The library contains 49,152 clones, with an average insert size of 112 kbp, providing coverage of 2.5 haploid genome equivalents. We have screened the library for eight amplified fragment length polymorphism (AFLP) derived markers known to be linked to an F. pratensis gene introgressed into L. perenne and conferring a staygreen phenotype as a consequence of a mutation in primary chlorophyll catabolism. While for four of the markers it was possible to identify bacterial artificial chromosome (BAC) clones, the other four AFLPs were too repetitive to enable reliable identification of locus-specific BACs. Moreover, when the four BACs were partially sequenced, no obvious coding regions could be identified. This contrasted to BACs identified using cDNA sequences, when multiple genes were identified on the same BAC.
Resumo:
Carotenoid pigments in plants fulfill indispensable functions in photosynthesis. Carotenoids that accumulate as secondary metabolites in chromoplasts provide distinct coloration to flowers and fruits. In this work we investigated the genetic mechanisms that regulate accumulation of carotenoids as secondary metabolites during ripening of tomato fruits. We analyzed two mutations that affect fruit pigmentation in tomato (Lycopersicon esculentum): Beta (B), a single dominant gene that increases β-carotene in the fruit, and old-gold (og), a recessive mutation that abolishes β-carotene and increases lycopene. Using a map-based cloning approach we cloned the genes B and og. Molecular analysis revealed that B encodes a novel type of lycopene β-cyclase, an enzyme that converts lycopene to β-carotene. The amino acid sequence of B is similar to capsanthin-capsorubin synthase, an enzyme that produces red xanthophylls in fruits of pepper (Capsicum annum). Our results prove that β-carotene is synthesized de novo during tomato fruit development by the B lycopene cyclase. In wild-type tomatoes B is expressed at low levels during the breaker stage of ripening, whereas in the Beta mutant its transcription is dramatically increased. Null mutations in the gene B are responsible for the phenotype in og, indicating that og is an allele of B. These results confirm that developmentally regulated transcription is the major mechanism that governs lycopene accumulation in ripening fruits. The cloned B genes can be used in various genetic manipulations toward altering pigmentation and enhancing nutritional value of plant foods.
Resumo:
In an effort to increase the density of sequence-based markers for the horse genome we generated 9473 BAC end sequences (BESs) from the CHORI-241 BAC library with an average read length of 677 bp. BLASTN searches with the BESs revealed 4036 meaningful hits (E
Resumo:
The locus RTM1 is necessary for restriction of long-distance movement of tobacco etch virus in Arabidopsis thaliana without causing a hypersensitive response or inducing systemic acquired resistance. The RTM1 gene was isolated by map-based cloning. The deduced gene product is similar to the α-chain of the Artocarpus integrifolia lectin, jacalin, and to several proteins that contain multiple repeats of a jacalin-like sequence. These proteins comprise a family with members containing modular organizations of one or more jacalin repeat units and are implicated in defense against viruses, fungi, and insects.
Resumo:
Fusarium wilt of tomato, caused by the fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), is an economically damaging disease that results in huge losses in Australia and other countries worldwide. The I-3 gene, which confers resistance to Fol race 3, has been described in wild tomato, Lycopersicon pennellii, accessions LA716 and PI414773. We are pursuing the isolation of I-3 from LA716 by map-based cloning. We have constructed a high-resolution map of the I-3 region and have identified markers closely flanking I-3 as well as markers co-segregating with I-3. In addition, construction of a physical map based on these markers has been initiated. This review describes the context of our research and our progress towards isolating the I-3 gene. It also describes some important practical outcomes of our work, including the development and use of a PCR-based marker for marker-assisted selection for I-3, and the finding that the I-3 gene from LA716 is different to that from PI1414773, which we have now designated I-7. Tomato varieties combining I-3 and I-7 have been developed and are currently being introduced into commercial production to further safeguard tomato crops against Fusarium wilt.
Resumo:
Background: Calluna vulgaris is one of the most important landscaping plants produced in Germany. Its enormous economic success is due to the prolonged flower attractiveness of mutants in flower morphology, the so-called bud-bloomers. In this study, we present the first genetic linkage map of C. vulgaris in which we mapped a locus of the economically highly desired trait " flower type" .Results: The map was constructed in JoinMap 4.1. using 535 AFLP markers from a single mapping population. A large fraction (40%) of markers showed distorted segregation. To test the effect of segregation distortion on linkage estimation, these markers were sorted regarding their segregation ratio and added in groups to the data set. The plausibility of group formation was evaluated by comparison of the " two-way pseudo-testcross" and the " integrated" mapping approach. Furthermore, regression mapping was compared to the multipoint-likelihood algorithm. The majority of maps constructed by different combinations of these methods consisted of eight linkage groups corresponding to the chromosome number of C. vulgaris.Conclusions: All maps confirmed the independent inheritance of the most important horticultural traits " flower type" , " flower colour" , and " leaf colour". An AFLP marker for the most important breeding target " flower type" was identified. The presented genetic map of C. vulgaris can now serve as a basis for further molecular marker selection and map-based cloning of the candidate gene encoding the unique flower architecture of C. vulgaris bud-bloomers. © 2013 Behrend et al.; licensee BioMed Central Ltd.
Resumo:
We constructed a BAC library of the model legume Lotus japonicus with a 6-to 7-fold genome coverage. We used vector PCLD04541, which allows direct plant transformation by BACs. The average insert size is 94 kb. Clones were stable in Escherichia coli and Agrobacterium tumefaciens.
Resumo:
We describe for the first time the application of fast neutron mutagenesis to the genetic dissection of root nodulation in legumes. We demonstrate the utility of chromosomal deletion mutations through production of a soybean supernodulation mutant FN37 that lacks the internal autoregulation of nodulation mechanism. After inoculation with microsymbiont Bradyrhizobium japonicum, FN37 forms at least 10 times more nodules than the wild type G. soja parent and has a phenotype identical to that of chemically induced allelic mutants nts382 and nts1007 (NTS-1 locus). Reciprocal grafting of shoots and roots confirmed systemic shoot control of the FN37 nodulation phenotype. RFLP/PCR marker pUTG132a and AFLP marker UQC-IS1 which are tightly linked to NTS-1 allowed the isolation of BAC contigs delineating both ends of the deletion. The genetic/physical distance ratio in the NTS-1 region is 279 kb/cM. The deletion is estimated to be about 460 kb based on the absence of markers and bacterial artificial chromosomes (BAC) ends as well as genetic and physical mapping. Deletion break points were determined physically and placed within flanking BAC contigs.
Resumo:
A cross between two different races (race 7 x race 25) of the soybean root and stem rot pathogen Phytophthora sojae was analyzed to characterize the genomic region flanking two cosegregating avirulence genes, Anur4 and Anur6. Both genes cosegregated in the ratio of 82:17 (avirulent:virulent) in an F-2 population, suggestive of a single locus controlling both phenotypes. A chromosome walk was commenced from RAPD marker OPE7.1C, 2.0 cM distant from the Anur4/6 locus. Three overlapping cosmids were isolated which included genetic markers that flank the Anur4/6 locus. The chromosome walk spanned a physical distance of 67 kb which represented a genetic map distance of 22.3cM, an average recombination frequency of 3.0kb/cM and 11.7-fold greater than the predicted average recombination frequency of 35.3 kb/cM for the entire P. sojae genome. Six genes (cDNA clones) expressed from the Anur4/6 genomic region encompassed by the cosmid contig were identified. Single nucleotide polymorphisms and restriction fragment length polymorphisms showed these six genes were closely linked to the Anur4/6 locus. Physical mapping of the cDNA clones within the cosmid contig made it possible to deduce the precise linkage order of the cDNAs. None of the six cDNA clones appear to be candidates for Anur4/6. We conclude that two of these cDNA clones flank a physical region of approximately 24 kb and 4.3 cM that appears to include the Anur4/6 locus. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.
Resumo:
The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.
Resumo:
Although commonplace in human disease genetics, genome-wide association (GWA) studies have only relatively recently been applied to plants. Using 32 phenotypes in the inbreeding crop barley, we report GWA mapping of 15 morphological traits across ∼500 cultivars genotyped with 1,536 SNPs. In contrast to the majority of human GWA studies, we observe high levels of linkage disequilibrium within and between chromosomes. Despite this, GWA analysis readily detected common alleles of high penetrance. To investigate the potential of combining GWA mapping with comparative analysis to resolve traits to candidate polymorphism level in unsequenced genomes, we fine-mapped a selected phenotype (anthocyanin pigmentation) within a 140-kb interval containing three genes. Of these, resequencing the putative anthocyanin pathway gene HvbHLH1 identified a deletion resulting in a premature stop codon upstream of the basic helix-loop-helix domain, which was diagnostic for lack of anthocyanin in our association and biparental mapping populations. The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops.