993 resultados para magnetic sensor
Resumo:
A measurement system for magnetic fields or electric currents uses a single-core fluxgate, magneto-inductive or magneto-impedance device driven from a radio frequency excitation source. Flux nulling feedback circuitry is provided to maintain the core of the sensor at substantially zero net flux and improve the linearity and dynamic response of the sensor system. A high pass filter is provided for reducing the dc effects of the ohmic resistance of the coil and lead wires on the effectiveness of the flux nulling feedback.
Resumo:
A measurement system for magnetic fields and electric currents uses a single-core fluxgate device driven with a radio frequency excitation source and is provided with a means to indicate saturation of the core of the sensor. A means is provided for detecting overload of the sensor as the core approaches continuous saturation using a pair of demodulators and a comparator.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Omega/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors.
Resumo:
Magnetic sensors have been added to a standard weather balloon radiosonde package to detect motion in turbulent air. These measure the terrestrial magnetic field and return data over the standard uhf radio telemetry. Variability in the magnetic sensor data is caused by motion of the instrument package. A series of radiosonde ascents carrying these sensors has been made near a Doppler lidar measuring atmospheric properties. Lidar-retrieved quantities include vertical velocity (w) profile and its standard deviation (w). w determined over 1 h is compared with the radiosonde motion variability at the same heights. Vertical motion in the radiosonde is found to be robustly increased when w>0.75 m s−1 and is linearly proportional to w. ©2009 American Institute of Physics
Resumo:
In the artificial lift method by Electrical Submersible Pump (ESP), the energy is transmitted for the well´s deep through a flat electric handle, where it is converted into mechanical energy through an engine of sub-surface, which is connected to a centrifugal pump. This transmits energy to the fluid under the pressure form, bringing it to the surface In this method the subsurface equipment is basically divided into: pump, seal and motor. The main function of the seal is the protect the motor, avoiding the motor´s oil be contaminated by oil production and the consequent burning of it. Over time, the seal will be wearing and initiates a contamination of motor oil, causing it to lose its insulating characteristics. This work presents a design of a magnetic sensor capable of detecting contamination of insulating oil used in the artificial lift method of oil-type Electrical Submersible Pump (ESP). The objective of this sensor is to generate alarm signal just the moment when the contamination in the isolated oil is present, enabling the implementation of a predictive maintenance. The prototype was designed to work in harsh conditions to reach a depth of 2000m and temperatures up to 150°C. It was used a simulator software to defined the mechanical and electromagnetic variables. Results of field experiments were performed to validate the prototype. The final results performed in an ESP system with a 62HP motor showed a good reliability and fast response of the prototype.
Resumo:
The study of gastrointestinal tract (GIT) functions is necessary due to the increasing number of pathologies associated with it. Directly influencing the quality of life, the gastrointestinal tract provides a number of parameters that, when analyzed, allow us to describe its dysfunctions. Thus, many techniques can be combined to obtain these properties related to the GIT. However, these techniques are often invasive, require surgery, catheter insertion, or to build a temporal model of these functions, require the sacrifice of animals in a series of data collection. The technique used in this study has the advantage of having a low operating cost, being free of ionizing radiation, non-invasive and is known as biosusceptometry AC (BAC), used to evaluate the properties of the GI tract by monitoring the position and concentration of materials magnetically marked. The sensor consists of two pairs of coils, one reference and one for detection. A fixed base line separates the sensing and reference coils, and also functions as support for the instrumentation. It is also important to note that the detection coils are arranged in a first order (subtraction) gradiometric way. The objective of this study was to analyze the effects of gastrectomy in gastric emptying and gastrointestinal transit time of solid food in rats using a BAC system associated with magnetic markers. To realize this study was constructed a dedicated BAC sensor, built to analyze these GIT properties. Data acquisition was obtained by aligning the magnetic sensor with the stomach and colon of the animal at pre-determined intervals. Thus, when approaching the magnetic material of the sensor, the balance created between the two sides of the sensor is broken. This imbalance can be measured, digitized and acquired. Tracer was used as a ration magnetically marked with ferrite... (Complete abstract click electronic access below)
Resumo:
In this paper we provide a framework that enables the rapid development of applications using non-standard input devices. Flash is chosen as programming language since it can be used for quickly assembling applications. We overcome the difficulties of Flash to access external devices by introducing a very generic concept: The state information generated by input devices is transferred to a PC where a program collects them, interprets them and makes them available on a web server. Application developers can now integrate a Flash component that accesses the data stored in XML format and directly use it in their application.
Resumo:
In the artificial lift method by Electrical Submersible Pump (ESP), the energy is transmitted for the well´s deep through a flat electric handle, where it is converted into mechanical energy through an engine of sub-surface, which is connected to a centrifugal pump. This transmits energy to the fluid under the pressure form, bringing it to the surface In this method the subsurface equipment is basically divided into: pump, seal and motor. The main function of the seal is the protect the motor, avoiding the motor´s oil be contaminated by oil production and the consequent burning of it. Over time, the seal will be wearing and initiates a contamination of motor oil, causing it to lose its insulating characteristics. This work presents a design of a magnetic sensor capable of detecting contamination of insulating oil used in the artificial lift method of oil-type Electrical Submersible Pump (ESP). The objective of this sensor is to generate alarm signal just the moment when the contamination in the isolated oil is present, enabling the implementation of a predictive maintenance. The prototype was designed to work in harsh conditions to reach a depth of 2000m and temperatures up to 150°C. It was used a simulator software to defined the mechanical and electromagnetic variables. Results of field experiments were performed to validate the prototype. The final results performed in an ESP system with a 62HP motor showed a good reliability and fast response of the prototype.
Resumo:
The objective of the work described in this dissertation is the development of new wireless passive force monitoring platforms for applications in the medical field, specifically monitoring lower limb prosthetics. The developed sensors consist of stress sensitive, magnetically soft amorphous metallic glass materials. The first technology is based on magnetoelastic resonance. Specifically, when exposed to an AC excitation field along with a constant DC bias field, the magnetoelastic material mechanically vibrates, and may reaches resonance if the field frequency matches the mechanical resonant frequency of the material. The presented work illustrates that an applied loading pins portions of the strip, effectively decreasing the strip length, which results in an increase in the frequency of the resonance. The developed technology is deployed in a prototype lower limb prosthetic sleeve for monitoring forces experienced by the distal end of the residuum. This work also reports on the development of a magnetoharmonic force sensor comprised of the same material. According to the Villari effect, an applied loading to the material results in a change in the permeability of the magnetic sensor which is visualized as an increase in the higher-order harmonic fields of the material. Specifically, by applying a constant low frequency AC field and sweeping the applied DC biasing field, the higher-order harmonic components of the magnetic response can be visualized. This sensor technology was also instrumented onto a lower limb prosthetic for proof of deployment; however, the magnetoharmonic sensor illustrated complications with sensor positioning and a necessity to tailor the interface mechanics between the sensing material and the surface being monitored. The novelty of these two technologies is in their wireless passive nature which allows for long term monitoring over the life time of a given device. Additionally, the developed technologies are low cost. Recommendations for future works include improving the system for real-time monitoring, useful for data collection outside of a clinical setting.
Resumo:
In this paper we demonstrate experimentally a magnetic field sensor using a fiber Bragg grating. The shift in the Bragg condition as a result of strain applied on the fiber mounted on a nickel base by the magnetic field gives an indirect measure of the field. The proposed method overcomes the need for long fiber lengths required in methods such as Faraday effect sensors.
A novel magneto-inductive sensor for the measurement of radio frequency magnetic fields and currents