992 resultados para machining mechanism


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The machining of carbon fiber reinforced polymer (CFRP) composite presents a significant challenge to the industry, and a better understanding of machining mechanism is the essential fundament to enhance the machining quality. In this study, a new energy based analytical method was developed to predict the cutting forces in orthogonal machining of unidirectional CFRP with fiber orientations ranging from 0° to 75°. The subsurface damage in cutting was also considered. Thus, the total specific energy for cutting has been estimated along with the energy consumed for forming new surfaces, friction, fracture in chip formation and subsurface debonding. Experiments were conducted to verify the validity of the proposed model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a multiscale simulation study was carried out in order to gain in-depth understanding of machining mechanism of nanometric cutting of single crystal copper. This study was focused on the effects of crystal orientation and cutting direction on the attainable machined surface quality. The machining mechanics was analyzed through cutting forces, chip formation morphology, generation and evolution of defects and residual stresses on the machined surface. The simulation results showed that the crystal orientation of the copper material and the cutting direction significantly influenced the deformation mechanism of the workpiece materials during the machining process. Relatively lower cutting forces were experienced while selecting crystal orientation family {1 1 1}. Dislocation movements were found to concentrate in front of the cutting chip while cutting on the (1 1 1) surface along the View the MathML source cutting direction thus, resulting in much smaller damaged layer on the machined surface, compared to other orientations. This crystal orientation and cutting direction therefore recommended for nanometric cutting of single crystal copper in practical applications. A nano-scratching experiment was performed to validate the above findings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The uniqThe unique lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband formation in the primary shear zone (PSZ). A coupled thermomechanical orthogonal cutting model, taking into account force, free volume and energy balance in the PSZ, is developed to quantitatively characterize lamellar chip formation. Its onset criterion is revealed through a linear perturbation analysis. Lamellar chip formation is understood as a self-sustained limit-cycle phenomenon: there is autonomous feedback in stress, free volume and temperature in the PSZ. The underlying mechanism is the symmetry breaking of free volume flow and source, rather than thermal instability. These results are fundamentally useful for machining BMGs and even for understanding the physical nature of inhomogeneous flow in BMGs.ue lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the concept, prototypes, and an optimal design method for a compliant mechanism kit as a parallel to the kits available for rigid-body mechanisms. The kit consists of flexible beams and connectors that can be easily hand-assembled using snap fits. It enables users, using their creativity and mechanics intuition, to quickly realize a compliant mechanism. The mechanisms assembled in this manner accurately capture the essential behavior of the topology, shape, size and material aspects and thereby can lead the way for a real compliant mechanism for practical use. Also described in this paper are the design of the connector to which flexible beams can be added in eight different directions; and prototyping of the spring steel connectors as well as beams using wire-cut electro discharge machining. It is noted in this paper that the concept of the kit also resolves a discrepancy in the finite element (FE) modeling of beam-based compliant mechanisms. The discrepancy arises when two or more beams are joining at one point and thus leading to increased stiffness. After resolving this discrepancy, this work extends the topology optimization to automatically generate designs that can be assembled with the kit. Thus, the kit and the accompanying analysis and optimal synthesis procedures comprise a self-contained educational as well as a research and pragmatic toolset for compliant mechanisms. The paper also illustrates how human creativity finds new ways of using the kit beyond the original intended use and how it is useful even for a novice to design compliant mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last few decades, Metal Matrix Composites (MMCs) have emerged as a material system offering tremendous potential for future applications. The primary advantages offered by these materials are their improved mechanical properties, particularly in the areas of wear, strength and stiffness. Of the MMCs, Aluminum matrix composites have grown in prominence due to their low density, low melting point and low cost. However, machining these materials remains a challenging task mainly due to the high abrasiveness of the reinforcing phases. Conventional machining processes such as turning, milling or drilling are adopted for machining MMCs. In this article, the existing and ongoing developments in machining MMCs vis-a-vis tool life, tool wear, machinability and understanding chip formation mechanism have been highlighted. Most of the studies discussed in this review will focus on Aluminum matrix composites. Certain areas of machining studies which have hitherto not been investigated have also been detailed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics grounded by a plane tangential grinding process with diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The discussion about the results emphasized the wear mechanism of the grinding wheel cutting surface and the cutting phenomenology of the grinding process. The grounded surface was evaluated using Scanning Electron Microscopy (SEM). © 1999 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics machined by a surface grinding process using diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The ground surface was evaluated using Scanning Electron Microscopy (SEM). As a result it can be said that the mechanism of material removal in the grinding of ceramic is largely one of brittle fracture. The increase of the hmax can reduce the tangential force required by the process. Although, it results in an increase in the surface damage, reducing the mechanical properties of the ground component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Product miniaturization for applications in fields such as biotechnology, medical devices, aerospace, optics and communications has made the advancement of micromachining techniques essential. Machining of hard and brittle materials such as ceramics, glass and silicon is a formidable task. Rotary ultrasonic machining (RUM) is capable of machining these materials. RUM is a hybrid machining process which combines the mechanism of material removal of conventional grinding and ultrasonic machining. Downscaling of RUM for micro scale machining is essential to generate miniature features or parts from hard and brittle materials. The goal of this thesis is to conduct a feasibility study and to develop a knowledge base for micro rotary ultrasonic machining (MRUM). Positive outcome of the feasibility study led to a comprehensive investigation on the effect of process parameters. The effect of spindle speed, grit size, vibration amplitude, tool geometry, static load and coolant on the material removal rate (MRR) of MRUM was studied. In general, MRR was found to increase with increase in spindle speed, vibration amplitude and static load. MRR was also noted to depend upon the abrasive grit size and tool geometry. The behavior of the cutting forces was modeled using time series analysis. Being a vibration assisted machining process, heat generation in MRUM is low which is essential for bone machining. Capability of MRUM process for machining bone tissue was investigated. Finally, to estimate the MRR a predictive model was proposed. The experimental and the theoretical results exhibited a matching trend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel solution to the long standing issue of chip entanglement and breakage in metal cutting is presented in this dissertation. Through this work, an attempt is made to achieve universal chip control in machining by using chip guidance and subsequent breakage by backward bending (tensile loading of the chip's rough top surface) to effectively control long continuous chips into small segments. One big limitation of using chip breaker geometries in disposable carbide inserts is that the application range is limited to a narrow band depending on cutting conditions. Even within a recommended operating range, chip breakers do not function effectively as designed due to the inherent variations of the cutting process. Moreover, for a particular process, matching the chip breaker geometry with the right cutting conditions to achieve effective chip control is a very iterative process. The existence of a large variety of proprietary chip breaker designs further exacerbates the problem of easily implementing a robust and comprehensive chip control technique. To address the need for a robust and universal chip control technique, a new method is proposed in this work. By using a single tool top form geometry coupled with a tooling system for inducing chip breaking by backward bending, the proposed method achieves comprehensive chip control over a wide range of cutting conditions. A geometry based model is developed to predict a variable edge inclination angle that guides the chip flow to a predetermined target location. Chip kinematics for the new tool geometry is examined via photographic evidence from experimental cutting trials. Both qualitative and quantitative methods are used to characterize the chip kinematics. Results from the chip characterization studies indicate that the chip flow and final form show a remarkable consistency across multiple levels of workpiece and tool configurations as well as cutting conditions. A new tooling system is then designed to comprehensively break the chip by backward bending. Test results with the new tooling system prove that by utilizing the chip guidance and backward bending mechanism, long continuous chips can be more consistently broken into smaller segments that are generally deemed acceptable or good chips. It is found that the proposed tool can be applied effectively over a wider range of cutting conditions than present chip breakers thus taking possibly the first step towards achieving universal chip control in machining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of "Helical Interference" in milled slots is examined and a coherent theory for the geometry of such surfaces is presented. An examination of the relevant literature shows a fragmented approach to the problem owing to its normally destructive nature, so a complete analysis is developed for slots of constant lead, thus giving a united and exact theory for many different setting parameters and a range of cutter shapes. For the first time, a theory is developed to explain the "Interference Surface" generated in variable lead slots for cylindrical work and attention is drawn to other practical surfaces, such as cones, where variable leads are encountered. Although generally outside the scope of this work, an introductory analysis of these cases is considered in order to develop the cylindrical theory. Special emphasis is laid upon practical areas where the interference mechanism can be used constructively and its application as the rake face of a cutting tool is discussed. A theory of rake angle for such cutting tools is given for commonly used planes, and relative variations in calculated rake angle between planes is examined. Practical tests are conducted to validate both constant lead and variable lead theories and some design improvements to the conventional dividing head are suggested in order to manufacture variable lead workpieces, by use of a "superposed" rotation. A prototype machine is manufactured and its kinematic principle given for both linear and non-linearly varying superposed rotations. Practical workpieces of the former type are manufactured and compared with analytical predictions,while theoretical curves are generated for non-linear workpieces and then compared with those of linear geometry. Finally suggestions are made for the application of these principles to the manufacture of spiral bevel gears, using the "Interference Surface" along a cone as the tooth form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During nanoindentation and ductile-regime machining of silicon, a phenomenon known as “self-healing” takes place in that the microcracks, microfractures, and small spallings generated during the machining are filled by the plastically flowing ductile phase of silicon. However, this phenomenon has not been observed in simulation studies. In this work, using a long-range potential function, molecular dynamics simulation was used to provide an improved explanation of this mechanism. A unique phenomenon of brittle cracking was discovered, typically inclined at an angle of 45° to 55° to the cut surface, leading to the formation of periodic arrays of nanogrooves being filled by plastically flowing silicon during cutting. This observation is supported by the direct imaging. The simulated X-ray diffraction analysis proves that in contrast to experiments, Si-I to Si-II (beta tin) transformation during ductile-regime cutting is highly unlikely and solid-state amorphisation of silicon caused solely by the machining stress rather than the cutting temperature is the key to its brittle-ductile transition observed during the MD simulations