546 resultados para machining
Resumo:
The main objective of statistical analysis of experi- mental investigations is to make predictions on the basis of mathematical equations so as the number of experiments. Abrasive jet machining (AJM) is an unconventional and novel machining process wherein microabrasive particles are propelled at high veloc- ities on to a workpiece. The resulting erosion can be used for cutting, etching, cleaning, deburring, drilling and polishing. In the study completed by the authors, statistical design of experiments was successfully employed to predict the rate of material removal by AJM. This paper discusses the details of such an approach and the findings.
Resumo:
In this paper, we consider the machining condition optimization models presented in earlier studies. Finding the optimal combination of machining conditions within the constraints is a difficult task. Hence, in earlier studies standard optimization methods are used. The non-linear nature of the objective function, and the constraints that need to be satisfied makes it difficult to use the standard optimization methods for the solution. In this paper, we present a real coded genetic algorithm (RCGA), to find the optimal combination of machining conditions. We present various issues related to real coded genetic algorithm such as solution representation, crossover operators, and repair algorithm in detail. We also present the results obtained for these models using real coded genetic algorithm and discuss the advantages of using real coded genetic algorithm for these problems. From the results obtained, we conclude that real coded genetic algorithm is reliable and accurate for solving the machining condition optimization models.
Resumo:
In the present investigation, unidirectional grinding marks were created on a set of steel plates. Sliding experiments were then conducted with the prepared steel plates using Al-Mg alloy pins and an inclined pin-on-plate sliding tester. The goals of the experiments were to ascertain the influence of inclination angle and grinding mark direction on friction and transfer layer formation during sliding contact. The inclination angle of the plate was held at 0.2 deg, 0.6 deg, 1 deg, 1.4 deg, 1.8 deg, 2.2 deg, and 2.6 deg in the tests. The pins were slid both perpendicular and parallel to the grinding marks direction. The experiments were conducted under both dry and lubricated conditions on each plate in an ambient environment. Results showed that the coefficient of friction and the formation of transfer layer depend on the grinding marks direction and inclination angle of the hard surfaces. For a given inclination angle, under both dry and lubricated conditions, the coefficient of friction and transfer layer formation were found to be greater when the pins slid perpendicular to the unidirectional grinding marks than when the pins slid parallel to the grinding marks. In addition, a stick-slip phenomenon was observed under lubricated conditions at the highest inclination angle for sliding perpendicular to the grinding marks direction. This phenomenon could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. DOI: 10.1115/1.4002604]
Resumo:
brusive Jet Machining (AJM) or Micro Blast Machining is a non-traditional machining process, wherein material removal is effected by the erosive action of a high velocity jet of a gas, carrying fine-grained abrasive particles, impacting the work surface. The AJM process differs from conventional sand blasting in that the abrasive is much finer and the process parameters and cutting action are carefully controlled. The process is particularly suitable to cut intricate shapes in hard and brittle materials which are sensitive to heat and have a tendency to chip easily. In other words, AJM can handle virtually any hard or brittle material. Already the process has found its ways Into dozens of applications; sometimes replacing conventional alternatives often doing jobs that could not be done in any other way. This paper reviews the current status of this non-conventional machining process and discusses the unique advantages and possible applications.
Resumo:
Over the last few decades, Metal Matrix Composites (MMCs) have emerged as a material system offering tremendous potential for future applications. The primary advantages offered by these materials are their improved mechanical properties, particularly in the areas of wear, strength and stiffness. Of the MMCs, Aluminum matrix composites have grown in prominence due to their low density, low melting point and low cost. However, machining these materials remains a challenging task mainly due to the high abrasiveness of the reinforcing phases. Conventional machining processes such as turning, milling or drilling are adopted for machining MMCs. In this article, the existing and ongoing developments in machining MMCs vis-a-vis tool life, tool wear, machinability and understanding chip formation mechanism have been highlighted. Most of the studies discussed in this review will focus on Aluminum matrix composites. Certain areas of machining studies which have hitherto not been investigated have also been detailed.
Resumo:
A new technique based on luminescent molecular sensors is utilized in these series of experiments for measurement of temperatures in material removal processes. 2-Dimensional machining of metals at low speeds and surface grinding configurations are used as the model experimental systems to understand the efficacy of this experimental technique. The experiments were conducted with a series of luminescent sensors and binder combinations for the temperature measurement. The luminescence of the sensor was measured through a charge-coupled device imaging camera, and intensive calibration exercises were performed on these sensors. Excellent agreement in the temperature fields measured through this new experimental approach and traditional infrared thermography is seen here. This technique offers the unique capability of allowing measurement of temperatures in the presence of a lubricant, akin to manufacturing conditions in situ. Extension of the technique to measure the temperature field at the tool-chip contact is described.
Resumo:
Simultaneous measurements of thickness and temperature profile of the lubricant film at chip-tool interface during machining have been studied in this experimental programme. Conventional techniques such as thermography can only provide temperature measurement under controlled environment in a laboratory and without the addition of lubricant. The present study builds on the capabilities of luminescent sensors in addition to direct image based observations of the chip-tool interface. A suite of experiments conducted using different types of sensors are reported in this paper, especially noteworthy are concomitant measures of thickness and temperature of the lubricant. (C) 2014 Elsevier Ltd.
Resumo:
在应用激光技术加工复杂曲面时,通常以采样点集为插值点来建立曲面函数,然后实现曲面上任意坐标点的精确定位。人工神经网络的BP算法能实现函数插值,但计算精度偏低,往往达不到插值精确要求,造成较大的加工误差。提出人工神经网络的共轭梯度最优化插值新算法,并通过实例仿真,证明了这种曲面精确定位方法的可行性,从而为激光加工的三维精确定位提供了一种良好解决方案。这种方法已经应用在实际中。