2 resultados para mécanotransduction
Resumo:
À ce jour, la scoliose idiopathique de l’adolescent (SIA) est la déformation rachidienne la plus commune parmi les enfants. Il est bien connu dans le domaine de recherche sur la SIA que les forces mécaniques, en particulier les forces biomécaniques internes dans le système musculosquelettique, pourraient jouer un rôle majeur dans l’initiation et le développement de la maladie. Cependant, les connaissances sur la transformation des forces et des stimulations mécaniques en activité biochimique sont peu abondantes. Cet axe de recherche est très prometteur et peut nous fournir de nouvelles idées dans le dépistage et le traitement de la SIA. Dans le cadre de cette étude, nous visons à caractériser la mécanotransduction chez les patients atteints de la SIA en employant des techniques novatrices aux niveaux in vivo et in vitro. Antérieurement dans notre laboratoire, nous avons démontré que les niveaux d’Ostéopontine (OPN) plasmatique chez l’humain corrèlent avec la progression et la sévérité de la maladie, et que ces changements sont observables avant le début de la scoliose. En plus, selon la littérature, l’OPN est une molécule sensible à la force mécanique, dont l’expression augmente en réponse dans de nombreux types de cellules chez plusieurs espèces. Toutefois, il n’existe aucune preuve que ce résultat soit valide in vivo chez l’humain. L’hétérogénéité physique et biochimique de la SIA pose un gros défi aux chercheurs. Souvent, il est très difficile de trouver des résultats ayant une grande applicabilité. Les études portant sur les facteurs biomécaniques ne font pas exception à cette tendance. En dépit de tout cela, nous croyons qu’une approche basée sur l’observation des contraintes de cisaillement présentes dans le système musculosquelettique pourrait aider à surmonter ces difficultés. Les contraintes de cisaillement physiologique sont générées par des courants de fluide en mouvement à l’intérieur des os. Aussi, elles sont omniprésentes et universelles chez l’humain, peu importe l’âge, le sexe, la condition physique, etc., ce qui veut dire que l’étudier pourrait fort bien avancer nos connaissances en formant une base fondamentale avec laquelle on pourra mieux comprendre les différences quant à la mécanotransduction chez les patients atteints de la SIA par rapport aux sujets sains. Pour ce projet, donc, nous proposons l’hypothèse que les sujets atteints de la SIA se différencient par leurs réponses respectives à la force mécanique au niveau cellulaire (en termes de l’expression génique) ainsi qu’au niveau in vivo (en termes du marqueur OPN et son récepteur, sCD44). Afin de vérifier la partie de notre hypothèse de recherche concernant l’aspect in vivo, nous avons recruté une cohorte de patients âgés de 9-17 ans, y compris i) des cas pré-chirurgicaux (angle de Cobb > 45°), ii) des cas modérément atteints (angle de Cobb 10-44°), iii) des témoins, et iv) des enfants asymptomatiques à risque de développer la scoliose (selon nos dépistages biochimiques et fonctionnels) d’âge et sexe appariés. Une pression pulsatile et dynamique avec une amplitude variant de 0-4 psi à 0.006 Hz a été appliquée à un des bras de chacun de nos sujets pour une durée de 90 minutes. Au tout début et à chaque intervalle de 30 minutes après l’initiation de la pression, un échantillon de sang a été prélevé, pour pouvoir surveiller les niveaux d’OPN et de sCD44 circulants chez les sujets. Nous avons découvert que le changement des niveaux d’OPN plasmatique, mais pas des niveaux de sCD44, corrélaient avec la sévérité de la difformité rachidienne chez les sujets, ceux ayant une courbe plus prononcée démontrant une ampleur de réponse moins élevée. Pour vérifier la partie de notre hypothèse de recherche concernant la réponse mécanotransductive cellulaire, des ostéoblastes prélevées à 12 sujets ont été mis en culture pour utilisation avec notre appareil (le soi-disant « parallel plate flow chamber »), qui sert à fournir aux ostéoblastes le niveau de contraintes de cisaillement désiré, de manière contrôlée et prévisible. Les sujets étaient tous femelles, âgées de 11-17 ans ; les patients ayant déjà une scoliose possédaient une courbe diagnostiquée comme « double courbe majeure ». Une contrainte fluidique de cisaillement à 2 Pa, 0.5 Hz a été appliquée à chaque échantillon ostéoblastique pour une durée de 90 minutes. Les changements apportés à l’expression génique ont été mesurés et quantifiés par micropuce et qRT-PCR. En réponse à notre stimulation, nous avons trouvé qu’il n’y avait que quelques gènes étant soit différentiellement exprimés, soit inchangés statistiquement dans tous les groupes expérimentaux atteints, en exhibant simultanément la condition contraire chez les témoins. Ces résultats mettent en évidence la grande diversité de la réponse mécanotransductive chez les patients comparés aux contrôles, ainsi qu’entre les sous-groupes fonctionnels de la SIA. Globalement, cette œuvre pourrait contribuer au développement d’outils diagnostiques innovateurs pour identifier les enfants asymptomatiques à risque de développer une scoliose, et évaluer le risque de progression des patients en ayant une déjà. Aussi, dans les années à venir, les profils mécanotransductifs des patients pourraient s’avérer un facteur crucial à considérer cliniquement, particulièrement en concevant ou personnalisant des plans de traitements pour des personnes atteintes.
Resumo:
La matrice extracellulaire (MEC) subit plusieurs modifications au cours du vieillissement, ce qui altère ses propriétés biomécaniques. Les cellules responsables de la régénération de la portion myogénique du muscle sont les cellules satellites, qui, une fois activées, sont appelées les cellules progénitrices myogéniques (CPM). La rigidité du muscle, influence le devenir des CPM. La capacité régénérative du muscle squelettique diminue lors du vieillissement. Nous avons posé l’hypothèse selon laquelle la rigidité observée dans le tissu âgé pourrait nuire à la capacité régénérative des CPM. Nous avons tout d’abord validé les modifications subies par la MEC suite au vieillissement en les comparant au tissu adulte. Les résultats montrent une augmentation de la quantité de collagènes et de réticulation non enzymatique. En plus, une augmentation de la rigidité du muscle et des fibres individualisées a été observée par microscopie à force atomique (AFM). L’équipe s’est ensuite intéressée à leur activité myogénique dans un modèle de fibres musculaires en culture (ex vivo). Nous avons observé une diminution du nombre de cellules myogéniques sur les fibres de tissus âgés, comparativement aux tissus adultes. Nous avons montré que les proportions de cellules quiescentes sont plus élevées sur des fibres adultes suite à l’isolement et que les proportions de cellules prolifératives et en voie de différenciation sont plus élevées sur les fibres âgées. De plus, sur des fibres endommagées gardées en culture six jours, nous avons observé que les proportions de cellules prolifératives sont plus élevées sur les fibres adultes et que celles des cellules en voie de différenciation sont plus élevées sur les fibres âgées. Enfin, nous avons observé l’activité myogénique des CPM ainsi que l’impact de la rigidité en culture (in vitro). Nous n’avons observé aucune différence des capacités de prolifération et de différenciation des myoblastes adultes et âgés. En terminant, nos recherches ont montré qu’une rigidité de 2.0 kPa favorise un état prolifératif tandis qu’une rigidité de 18 kPa stimule plutôt l’engagement vers la différenciation. Ces résultats suggèrent que la rigidité peut être une cause de la diminution du potentiel régénératif du muscle vieillissant. En résumé, ces travaux soulignent l’importance de l’augmentation de la rigidité du microenvironnement sur les CPM comme cause de la diminution du potentiel de régénération du muscle vieillissant.