Étude de la mécanotransduction dans la scoliose idiopathique de l’adolescence (SIA)
Contribuinte(s) |
Moreau, Alain Aubin, Carl-Éric |
---|---|
Data(s) |
27/08/2013
31/12/1969
27/08/2013
03/08/2012
01/12/2011
|
Resumo |
À ce jour, la scoliose idiopathique de l’adolescent (SIA) est la déformation rachidienne la plus commune parmi les enfants. Il est bien connu dans le domaine de recherche sur la SIA que les forces mécaniques, en particulier les forces biomécaniques internes dans le système musculosquelettique, pourraient jouer un rôle majeur dans l’initiation et le développement de la maladie. Cependant, les connaissances sur la transformation des forces et des stimulations mécaniques en activité biochimique sont peu abondantes. Cet axe de recherche est très prometteur et peut nous fournir de nouvelles idées dans le dépistage et le traitement de la SIA. Dans le cadre de cette étude, nous visons à caractériser la mécanotransduction chez les patients atteints de la SIA en employant des techniques novatrices aux niveaux in vivo et in vitro. Antérieurement dans notre laboratoire, nous avons démontré que les niveaux d’Ostéopontine (OPN) plasmatique chez l’humain corrèlent avec la progression et la sévérité de la maladie, et que ces changements sont observables avant le début de la scoliose. En plus, selon la littérature, l’OPN est une molécule sensible à la force mécanique, dont l’expression augmente en réponse dans de nombreux types de cellules chez plusieurs espèces. Toutefois, il n’existe aucune preuve que ce résultat soit valide in vivo chez l’humain. L’hétérogénéité physique et biochimique de la SIA pose un gros défi aux chercheurs. Souvent, il est très difficile de trouver des résultats ayant une grande applicabilité. Les études portant sur les facteurs biomécaniques ne font pas exception à cette tendance. En dépit de tout cela, nous croyons qu’une approche basée sur l’observation des contraintes de cisaillement présentes dans le système musculosquelettique pourrait aider à surmonter ces difficultés. Les contraintes de cisaillement physiologique sont générées par des courants de fluide en mouvement à l’intérieur des os. Aussi, elles sont omniprésentes et universelles chez l’humain, peu importe l’âge, le sexe, la condition physique, etc., ce qui veut dire que l’étudier pourrait fort bien avancer nos connaissances en formant une base fondamentale avec laquelle on pourra mieux comprendre les différences quant à la mécanotransduction chez les patients atteints de la SIA par rapport aux sujets sains. Pour ce projet, donc, nous proposons l’hypothèse que les sujets atteints de la SIA se différencient par leurs réponses respectives à la force mécanique au niveau cellulaire (en termes de l’expression génique) ainsi qu’au niveau in vivo (en termes du marqueur OPN et son récepteur, sCD44). Afin de vérifier la partie de notre hypothèse de recherche concernant l’aspect in vivo, nous avons recruté une cohorte de patients âgés de 9-17 ans, y compris i) des cas pré-chirurgicaux (angle de Cobb > 45°), ii) des cas modérément atteints (angle de Cobb 10-44°), iii) des témoins, et iv) des enfants asymptomatiques à risque de développer la scoliose (selon nos dépistages biochimiques et fonctionnels) d’âge et sexe appariés. Une pression pulsatile et dynamique avec une amplitude variant de 0-4 psi à 0.006 Hz a été appliquée à un des bras de chacun de nos sujets pour une durée de 90 minutes. Au tout début et à chaque intervalle de 30 minutes après l’initiation de la pression, un échantillon de sang a été prélevé, pour pouvoir surveiller les niveaux d’OPN et de sCD44 circulants chez les sujets. Nous avons découvert que le changement des niveaux d’OPN plasmatique, mais pas des niveaux de sCD44, corrélaient avec la sévérité de la difformité rachidienne chez les sujets, ceux ayant une courbe plus prononcée démontrant une ampleur de réponse moins élevée. Pour vérifier la partie de notre hypothèse de recherche concernant la réponse mécanotransductive cellulaire, des ostéoblastes prélevées à 12 sujets ont été mis en culture pour utilisation avec notre appareil (le soi-disant « parallel plate flow chamber »), qui sert à fournir aux ostéoblastes le niveau de contraintes de cisaillement désiré, de manière contrôlée et prévisible. Les sujets étaient tous femelles, âgées de 11-17 ans ; les patients ayant déjà une scoliose possédaient une courbe diagnostiquée comme « double courbe majeure ». Une contrainte fluidique de cisaillement à 2 Pa, 0.5 Hz a été appliquée à chaque échantillon ostéoblastique pour une durée de 90 minutes. Les changements apportés à l’expression génique ont été mesurés et quantifiés par micropuce et qRT-PCR. En réponse à notre stimulation, nous avons trouvé qu’il n’y avait que quelques gènes étant soit différentiellement exprimés, soit inchangés statistiquement dans tous les groupes expérimentaux atteints, en exhibant simultanément la condition contraire chez les témoins. Ces résultats mettent en évidence la grande diversité de la réponse mécanotransductive chez les patients comparés aux contrôles, ainsi qu’entre les sous-groupes fonctionnels de la SIA. Globalement, cette œuvre pourrait contribuer au développement d’outils diagnostiques innovateurs pour identifier les enfants asymptomatiques à risque de développer une scoliose, et évaluer le risque de progression des patients en ayant une déjà. Aussi, dans les années à venir, les profils mécanotransductifs des patients pourraient s’avérer un facteur crucial à considérer cliniquement, particulièrement en concevant ou personnalisant des plans de traitements pour des personnes atteintes. Adolescent idiopathic scoliosis (AIS) is the most commonly occurring musculoskeletal deformity among children today. It is generally well accepted in scoliosis research that mechanical forces, especially the internal biomechanical forces of the musculoskeletal system, could well have a major role in the induction and pathogenesis of the disease. However, the process by which mechanical loads or stimuli are converted into biochemical activity (mechanotransduction) has not been explored so deeply. This emerging facet of research in AIS holds much promise for new insights into the disease. Here, we aim to characterize mechanotransduction in scoliosis patients using some novel techniques at both the in vivo and in vitro levels. Previously in our lab, we demonstrated that the level of plasma osteopontin (OPN) and sCD44 in the human body is a strong indicator of disease progression and severity, and that these changes are observable before scoliosis onset. In the literature, OPN in vitro is known to be mechanosensitive, showing upregulation in response to mechanical stress in a variety of cell types across many species. However, to the best of the author’s knowledge, no literature exists as to whether this behaviour carries over in vivo in humans. A major difficulty in AIS research is the heterogeneity of the disease, both physically and biochemically. Because of this, many times it is difficult to find results with wide applicability to patients. Study of biomechanical factors in AIS is no exception. We believe, however, that study of fluid shear stress in the musculoskeletal system may be able to solve this problem for mechanotransduction-related issues in AIS. Native physiological fluid shear stresses in humans are experienced in the musculoskeletal system, caused by fluid movement over cells therein. These fluid shear stresses are omnipresent and universal in all humans, regardless of age, gender, fitness level, etc., which means that studying it could very well go a long way towards establishing a fundamental basis of understanding the differences as to mechanotransduction in scoliosis patients as opposed to normal cases. In this project, then, we advanced the hypothesis that AIS patients are distinguishable in the way they respond to mechanical force at both the cellular level (in terms of gene expression) as well as globally at the in vivo level (in terms of the scoliosis marker OPN and its receptor sCD44). To test the in vivo portion of our hypothesis, we recruited a cohort of patients between the ages of 9-17, each one of which fell into one of 4 subject groups: i) surgical cases (pre-surgery, Cobb angle > 45°), ii) moderately affected cases (Cobb angle 10-44°), iii) controls, or iv) asymptomatic children at risk of developing scoliosis matched for age and gender against healthy controls. A dynamic, pulsatile, compressive pressure of variable amplitude from 0-4 psi at 0.006 Hz was applied to the arm of each subject for a period of 90 minutes. Initially and at intervals of 30 minutes after the start of force application, blood samples were taken in order to monitor circulating plasma OPN and sCD44 levels in subjects. We found that the change of circulating OPN levels, but not sCD44 levels, measured in vivo in response to our mechanical stimulation was statistically significantly correlated to status of spinal deformity severity, with more severely affected subjects demonstrating lower magnitudes of ΔOPN. To test the cellular portion of our hypothesis, osteoblasts from severely affected AIS patients and unaffected controls were cultured for use with our parallel plate flow chamber (PPFC) apparatus setup, which permits application of fluid shear stress patterns to cells in a predictable, controllable manner. Subjects were all females who fell into the 11-17 years age range, with scoliotic patients presenting with double major curves. A dynamic, sinusoidal and oscillatory fluid shear stress pattern was applied to osteoblasts at 2 Pa, 0.5 Hz for 90 minutes. Overall gene expression changes across RNA samples as a result of our stimulation were measured using microarray and qRT-PCR approaches. In response, only a very small number of genes are either mutually differentially expressed or statistically unchanged across all functional scoliotic subgroups while having the opposite condition in the control group, indicating a great degree of difference in terms of mechanotransductive response as compared internally between AIS functional subgroups, as well as between control and AIS patients. Globally, this project’s work may contribute to the development of innovative diagnostic tools to identify asymptomatic children at risk of developing scoliosis, and to assess the risk of curve progression at an early stage in those already affected. Also, in years to come, the mechanotransductive profile of a patient could be another integral factor to weigh, clinically, when considering or designing treatment plans for affected persons. |
Identificador | |
Idioma(s) |
en |
Palavras-Chave | #mécanotransduction #scoliose idiopathique #ostéopontine #contraintes de cisaillement fluidique #parallel plate flow chamber #biomécanique #sCD44 #outils diagnostiques #mechanotransduction #idiopathic scoliosis #osteopontin #fluid shear stress #biomechanical #diagnostic tools #Engineering - Biomedical / Ingénierie - Biomédicale (UMI : 0541) |
Tipo |
Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |