905 resultados para low-timing-jitter 20-GHz optical puls


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 mu m wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area guowth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mX output light power of 4.5 mW and over 20 dB extinction ratio when coupled into a single mode Fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using I this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a novel dual-wavelength erbium-fiber laser that uses a single nonlinear-optical loop mirror modulator to simultaneously modelock two cavities with chirped fiber Bragg gratings as end mirrors. We show that this configuration produces synchronized soliton pulse trains with an ultra-low RMS inter-pulse-stream timing jitter of 620 fs enabling application to multiwavelength systems at data rates in excess of 130 Gb/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a novel dual-wavelength erbium-fiber laser that uses a single nonlinear-optical loop mirror modulator to simultaneously modelock two cavities with chirped fiber Bragg gratings as end mirrors. We show that this configuration produces synchronized soliton pulse trains with an ultra-low RMS inter-pulse-stream timing jitter of 620 fs enabling application to multiwavelength systems at data rates in excess of 130 Gb/s. © 1995 IEEE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timing jitter is a major factor limiting the performance of any high-speed, long-haul data transmission system. It arises from a number of reasons, such as interaction with accumulated spontaneous emission, inter-symbol interference (ISI), electrostriction etc. Some effects causing timing jitter can be reduced by means of non-linear filtering, using, for example, a nonlinear optical loop mirror (NOLM) [1]. The NOLM has been shown to reduce the timing jitter by suppressing the ASE and by stabilising the pulse duration [2, 3]. In this paper, we investigate the dynamics of timing jitter in a 2R regenerated system, nonlinearly guided by NOLMs at bit rates of 10, 20, 40, and 80- Gbit/s. Transmission performance of an equivalent non-regenerated (generic) system is taken as a reference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze theoretically the interplay between optical return-to-zero signal degradation due to timing jitter and additive amplified-spontaneous-emission noise. The impact of these two factors on the performance of a square-law direct detection receiver is also investigated. We derive an analytical expression for the bit-error probability and quantitatively determine the conditions when the contributions of the effects of timing jitter and additive noise to the bit error rate can be treated separately. The analysis of patterning effects is also presented. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrated EOM VCSELs is shown to offer high linearity (92dB/Hz 2/3 at 6GHz) and by extrapolation ∼90dB/Hz2/3 up to 20GHz. Successful modulation with IEEE 802.11g signals is demonstrated at 6GHz with a 12dB dynamic range. © 2011 Optical Society of America.