922 resultados para logic formula
Resumo:
In this reviewing paper, we recall the main results of our papers [24, 31] where we introduced two paraconsistent semantics for Pavelka style fuzzy logic. Each logic formula a is associated with a 2 x 2 matrix called evidence matrix. The two semantics are consistent if they are seen from 'outside'; the structure of the set of the evidence matrices M is an MV-algebra and there is nothing paraconsistent there. However, seen from "inside,' that is, in the construction of a single evidence matrix paraconsistency comes in, truth and falsehood are not each others complements and there is also contradiction and lack of information (unknown) involved. Moreover, we discuss the possible applications of the two logics in real-world phenomena.
Resumo:
RelAPS is an interactive system assisting in proving relation-algebraic theorems. The aim of the system is to provide an environment where a user can perform a relation-algebraic proof similar to doing it using pencil and paper. The previous version of RelAPS accepts only Horn-formulas. To extend the system to first order logic, we have defined and implemented a new language based on theory of allegories as well as a new calculus. The language has two different kinds of terms; object terms and relational terms, where object terms are built from object constant symbols and object variables, and relational terms from typed relational constant symbols, typed relational variables, typed operation symbols and the regular operations available in any allegory. The calculus is a mixture of natural deduction and the sequent calculus. It is formulated in a sequent style but with exactly one formula on the right-hand side. We have shown soundness and completeness of this new logic which verifies that the underlying proof system of RelAPS is working correctly.
Resumo:
Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition technique quite far from that adopted in the NEMO Phase 1 telescope. The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated as well on the board, and a specific firmware has been realized to comply with the present communication protocols. This stage of the project foresees the use of an FPGA, a high speed configurable device, to provide the board with a flexible digital logic control core. After the validation of the whole front-end architecture this feature would be probably integrated in a common mixed-signal ASIC (Application Specific Integrated Circuit). The volatile nature of the configuration memory of the FPGA implied the integration of a flash ISP (In System Programming) memory and a smart architecture for a safe remote reconfiguration of it. All the integrated features of the board have been tested. At the Catania laboratory the behavior of the LIRA chip has been investigated in the digital environment of the DAQ board and we succeeded in driving the acquisition with the FPGA. The PMT pulses generated with an arbitrary waveform generator were correctly triggered and acquired by the analog chip, and successively they were digitized by the on board ADC under the supervision of the FPGA. For the communication towards the data concentrator a test bench has been realized in Bologna where, thanks to a lending of the Roma University and INFN, a full readout chain equivalent to that present in the NEMO phase-1 was installed. These tests showed a good behavior of the digital electronic that was able to receive and to execute command imparted by the PC console and to answer back with a reply. The remotely configurable logic behaved well too and demonstrated, at least in principle, the validity of this technique. A new prototype board is now under development at the Catania laboratory as an evolution of the one described above. This board is going to be deployed within the NEMO Phase-2 tower in one of its floors dedicated to new front-end proposals. This board will integrate a new analog acquisition chip called SAS (Smart Auto-triggering Sampler) introducing thus a new analog front-end but inheriting most of the digital logic present in the current DAQ board discussed in this thesis. For what concern the activity on high-resolution vertex detectors, I worked within the SLIM5 collaboration for the characterization of a MAPS (Monolithic Active Pixel Sensor) device called APSEL-4D. The mentioned chip is a matrix of 4096 active pixel sensors with deep N-well implantations meant for charge collection and to shield the analog electronics from digital noise. The chip integrates the full-custom sensors matrix and the sparsifification/readout logic realized with standard-cells in STM CMOS technology 130 nm. For the chip characterization a test-beam has been set up on the 12 GeV PS (Proton Synchrotron) line facility at CERN of Geneva (CH). The collaboration prepared a silicon strip telescope and a DAQ system (hardware and software) for data acquisition and control of the telescope that allowed to store about 90 million events in 7 equivalent days of live-time of the beam. My activities concerned basically the realization of a firmware interface towards and from the MAPS chip in order to integrate it on the general DAQ system. Thereafter I worked on the DAQ software to implement on it a proper Slow Control interface of the APSEL4D. Several APSEL4D chips with different thinning have been tested during the test beam. Those with 100 and 300 um presented an overall efficiency of about 90% imparting a threshold of 450 electrons. The test-beam allowed to estimate also the resolution of the pixel sensor providing good results consistent with the pitch/sqrt(12) formula. The MAPS intrinsic resolution has been extracted from the width of the residual plot taking into account the multiple scattering effect.
Resumo:
The nonmonotonic logic called Reflective Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Reflective Logic with an initial set of axioms and defaults if and only if the meaning of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Reflective Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since all the laws of First Order Logic hold and since both the Barcan Formula and its converse hold.
Resumo:
The nonmonotonic logic called Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan Formula and its converse hold.
Resumo:
Reflective Logic and Default Logic are both generalized so as to allow universally quantified variables to cross modal scopes whereby the Barcan formula and its converse hold. This is done by representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before the defaults. The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are then compared by deriving metatheorems of Z that express their relationships. The main result is to show that every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the equivalence for Quantified Reflective Logic. It is further shown that Quantified Reflective Logic and Quantified Default Logic have exactly the same solutions when no default has an entailment condition.
Resumo:
The nonmonotonic logic called Autoepistemic Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Autoepistemic Logic with an initial set of axioms if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meaning of that initial set of sentences. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and unlike the original Autoepistemic Logic, it is easily generalized to the case where quantified variables may be shared across the scope of modal expressions thus allowing the derivation of quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan formula and its converse hold.
Resumo:
Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.
Resumo:
A large number of initiatives in cities in Brazil - including slum clearance and upgrading - have been undertaken over the years in an effort to ameliorate the problems arising from informal occupation; unfortunately, however, little is known about the related performance outcomes. Careful appraisal of the results of such initiatives is thus called for, covering evaluations of dwellers` perceptions of the upgraded environments. Among the available evaluation methods, post-occupancy evaluation (POE) is commonly employed, although it fails adequately to reflect prevailing subjective concepts of quality. The present paper contains the partial findings of a research exercise aimed at developing an original method, using fuzzy logic, for urban environmental quality evaluation in informally occupied areas on the basis of combining quantitative indicators and dweller perception. It combines POE with fuzzy logic in order to develop tools that can better model the uncertain information that emerges from that kind of study. This paper aims to introduce an uncertainty measure used in order to identify the strengths and weaknesses of slum upgrading projects. The results show that it is possible to quantify certainty degrees in the findings and to define if additional information is needed.
Resumo:
An efficient expert system for the power transformer condition assessment is presented in this paper. Through the application of Duval`s triangle and the method of the gas ratios a first assessment of the transformer condition is obtained in the form of a dissolved gas analysis (DGA) diagnosis according IEC 60599. As a second step, a knowledge mining procedure is performed, by conducting surveys whose results are fed into a first Type-2 Fuzzy Logic System (T2-FLS), in order to initially evaluate the condition of the equipment taking only the results of dissolved gas analysis into account. The output of this first T2-FLS is used as the input of a second T2-FLS, which additionally weighs up the condition of the paper-oil system. The output of this last T2-FLS is given in terms of words easily understandable by the maintenance personnel. The proposed assessing methodology has been validated for several cases of transformers in service. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates probabilistic logics endowed with independence relations. We review propositional probabilistic languages without and with independence. We then consider graph-theoretic representations for propositional probabilistic logic with independence; complexity is analyzed, algorithms are derived, and examples are discussed. Finally, we examine a restricted first-order probabilistic logic that generalizes relational Bayesian networks. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.
Resumo:
In this paper we follow the BOID (Belief, Obligation, Intention, Desire) architecture to describe agents and agent types in Defeasible Logic. We argue, in particular, that the introduction of obligations can provide a new reading of the concepts of intention and intentionality. Then we examine the notion of social agent (i.e., an agent where obligations prevail over intentions) and discuss some computational and philosophical issues related to it. We show that the notion of social agent either requires more complex computations or has some philosophical drawbacks.
Resumo:
While some recent frameworks on cognitive agents addressed the combination of mental attitudes with deontic concepts, they commonly ignore the representation of time. An exception is [1]that manages also some temporal aspects both with respect to cognition and normative provisions. We propose in this paper an extension of the logic presented in [1]with temporal intervals.