991 resultados para logarithmic geometry, deformation, normal crossing, symplectic, smoothing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we give a definition of the term logarithmically symplectic variety; to be precise, we distinguish even two types of such varieties. The general type is a triple $(f,nabla,omega)$ comprising a log smooth morphism $fcolon Xtomathrm{Spec}kappa$ of log schemes together with a flat log connection $nablacolon LtoOmega^1_fotimes L$ and a ($nabla$-closed) log symplectic form $omegainGamma(X,Omega^2_fotimes L)$. We define the functor of log Artin rings of log smooth deformations of such varieties $(f,nabla,omega)$ and calculate its obstruction theory, which turns out to be given by the vector spaces $H^i(X,B^bullet_{(f,nabla)}(omega))$, $i=0,1,2$. Here $B^bullet_{(f,nabla)}(omega)$ is the class of a certain complex of $mathcal{O}_X$-modules in the derived category $mathrm{D}(X/kappa)$ associated to the log symplectic form $omega$. The main results state that under certain conditions a log symplectic variety can, by a flat deformation, be smoothed to a symplectic variety in the usual sense. This may provide a new approach to the construction of new examples of irreducible symplectic manifolds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the deformation theory of pairs of an irreducible symplectic manifold X together with a Lagrangian subvariety Y in X, where the focus is on singular Lagrangian subvarieties. Among other things, Voisin's results [Voi92] are generalized to the case of simple normal crossing subvarieties; partial results are also obtained for more complicated singularities.rnAs done in Voisin's article, we link the codimension of the subspace of the universal deformation space of X parametrizing those deformations where Y persists, to the rank of a certain map in cohomology. This enables us in some concrete cases to actually calculate or at least estimate the codimension of this particular subspace. In these cases the Lagrangian subvarieties in question occur as fibers or fiber components of a given Lagrangian fibration f : X --> B. We discuss examples and the question of how our results might help to understand some aspects of Lagrangian fibrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we investigate the geometry of quasi homogeneous corank one finitely determined map germs from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. We give a complete description, in terms of the weights and degrees, of the invariants that are associated to all stable singularities which appear in the discriminant of such map germs. The first class of invariants which we study are the isolated singularities, called 0-stable singularities because they are the 0-dimensional singularities. First, we give a formula to compute the number of An points which appear in any stable deformation of a quasi homogeneous co-rank one map germ from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. To get such a formula, we apply the Hilbert's syzygy theorem to determine the graded free resolution given by the syzygy modules of the associated iterated Jacobian ideal. Then we show how to obtain the other 0-stable singularities, these isolated singularities are formed by multiple points and here we use the relation among them and the Fitting ideals of the discriminant. For n = 2, there exists only the germ of double points set and for n = 3 there are the triple points, named points A1,1,1 and the normal crossing between a germ of a cuspidal edge and a germ of a plane, named A2,1. For n = 3, there appear also the one-dimensional singularities, which are of two types: germs of cuspidal edges or germs of double points curves. For these singularities, we show how to compute the polar multiplicities and also the local Euler obstruction at the origin in terms of the weights and degrees. © 2013 Pushpa Publishing House.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUNDAMENTO: A relevância do padrão de remodelação no modelo de ratos expostos à fumaça do cigarro não é conhecida. OBJETIVO: Analisar a presença de diferentes padrões de remodelação nesse modelo e sua relação com a função ventricular. MÉTODOS: Ratos fumantes (n=47) foram divididos de acordo com o padrão de geometria, analisado pelo ecocardiograma: normal (índice de massa normal e espessura relativa normal), remodelação concêntrica (índice de massa normal e espessura relativa aumentada), hipertrofia concêntrica (índice de massa aumentado e espessura relativa aumentada) e hipertrofia excêntrica (índice de massa aumentado e espessura relativa normal). RESULTADOS: Os ratos fumantes apresentaram um dos quatro padrões de geometria: padrão normal, 51%; hipertrofia excêntrica:,32%; hipertrofia concêntrica, 13% e remodelação concêntrica, 4%. Os grupos normal e hipertrofia excêntrica apresentaram menores valores de fração de ejeção e porcentagem de encurtamento que o grupo hipertrofia concêntrica. Treze animais (28%) apresentaram disfunção sistólica, detectada pela fração de ejeção e pela porcentagem de encurtamento. Na análise de regressão univariada, os padrões de geometria e o índice de massa não foram fator de predição de disfunção ventricular (p>0,05). Por outro lado, o aumento da espessura relativa da parede foi fator de predição de disfunção ventricular na análise univariada (p<0,001) e na análise multivariada, após ajuste para o índice de massa (p=0,003). CONCLUSÃO: Ratos expostos à fumaça do cigarro apresentam um dos quatro diferentes padrões de remodelação. Entre as variáveis geométricas analisadas, somente o aumento da espessura relativa da parede do ventrículo esquerdo foi fator de predição de disfunção ventricular nesse modelo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good contact model must provide an accurate description of the global contact phenomena (contact forces and torques, number and position of the contact points) and of the local contact phenomena (position and shape of the contact patch, stresses and displacements). The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). The wheel - rail contact problem has been discussed by several authors and many models can be found in the literature. The contact models can be subdivided into two different categories: the global models and the local (or differential) models. Currently, as regards the global models, the main approaches to the problem are the so - called rigid contact formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint equations and the contact points are detected during the dynamic simulation by solving the nonlinear algebraic differential equations associated to the constrained multibody system. Indentation between the bodies is not permitted and the normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces respectively. Also the semi - elastic approach considers the wheel and the rail as rigid bodies. However in this case no kinematic constraints are imposed and the indentation between the bodies is permitted. The contact points are detected by means of approximated procedures (based on look - up tables and simplifying hypotheses on the problem geometry). The normal contact forces are calculated as a function of the indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces. Both the described multibody approaches are computationally very efficient but their generality and accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too restrictive and, in many circumstances, unverified. In order to obtain a complete description of the contact phenomena, local (or differential) contact models are needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s equations and the contact has to be described by suitable analytical contact conditions. The contact between elastic bodies has been widely studied in literature both in the general case and in the rolling case. Many procedures based on variational inequalities, FEM techniques and convex optimization have been developed. This kind of approach assures high generality and accuracy but still needs very large computational costs and memory consumption. Due to the high computational load and memory consumption, referring to the current state of the art, the integration between multibody and differential modeling is almost absent in literature especially in the railway field. However this integration is very important because only the differential modeling allows an accurate analysis of the contact problem (in terms of contact forces and torques, position and shape of the contact patch, stresses and displacements) while the multibody modeling is the standard in the study of the railway dynamics. In this thesis some innovative wheel – rail contact models developed during the Ph. D. activity will be described. Concerning the global models, two new models belonging to the semi – elastic approach will be presented; the models satisfy the following specifics: 1) the models have to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the models have to consider generic railway tracks and generic wheel and rail profiles 3) the models have to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the models have to evaluate the number and the position of the contact points and, for each point, the contact forces and torques 4) the models have to be implementable directly online within the multibody models without look - up tables 5) the models have to assure computation times comparable with those of commercial multibody software (Simpack Rail, Adams Rail) and compatible with RT and HIL applications 6) the models have to be compatible with commercial multibody software (Simpack Rail, Adams Rail). The most innovative aspect of the new global contact models regards the detection of the contact points. In particular both the models aim to reduce the algebraic problem dimension by means of suitable analytical techniques. This kind of reduction allows to obtain an high numerical efficiency that makes possible the online implementation of the new procedure and the achievement of performance comparable with those of commercial multibody software. At the same time the analytical approach assures high accuracy and generality. Concerning the local (or differential) contact models, one new model satisfying the following specifics will be presented: 1) the model has to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the model has to consider generic railway tracks and generic wheel and rail profiles 3) the model has to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the model has to able to calculate both the global contact variables (contact forces and torques) and the local contact variables (position and shape of the contact patch, stresses and displacements) 4) the model has to be implementable directly online within the multibody models 5) the model has to assure high numerical efficiency and a reduced memory consumption in order to achieve a good integration between multibody and differential modeling (the base for the local contact models) 6) the model has to be compatible with commercial multibody software (Simpack Rail, Adams Rail). In this case the most innovative aspects of the new local contact model regard the contact modeling (by means of suitable analytical conditions) and the implementation of the numerical algorithms needed to solve the discrete problem arising from the discretization of the original continuum problem. Moreover, during the development of the local model, the achievement of a good compromise between accuracy and efficiency turned out to be very important to obtain a good integration between multibody and differential modeling. At this point the contact models has been inserted within a 3D multibody model of a railway vehicle to obtain a complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the physical and geometrical characteristics of which are easily available in the literature. The model of the whole railway vehicle (multibody model and contact model) has been implemented in the Matlab/Simulink environment. The multibody model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody dynamics, while, as regards the contact models, the CS – functions have been used; this particular Matlab architecture allows to efficiently connect the Matlab/Simulink and the C/C++ environment. The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody software for railway vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the whole model. The comparison between the results obtained by the Matlab/ Simulink model and those obtained by the Simpack Rail model has allowed an accurate and reliable validation of the new contact models. In conclusion to this brief introduction to my Ph. D. thesis, we would like to thank Trenitalia and the Regione Toscana for the support provided during all the Ph. D. activity. Moreover we would also like to thank the INTEC GmbH, the society the develops the software Simpack Rail, with which we are currently working together to develop innovative toolboxes specifically designed for the wheel rail contact analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I discuss geometry and normal forms for pseudo-Riemannian metrics with parallel spinor fields in some interesting dimensions. I also discuss the interaction of these conditions for parallel spinor fields with the condition that the Ricci tensor vanish (which, for pseudo-Riemannian manifolds, is not an automatic consequence of the existence of a nontrivial parallel spinor field).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Helvetic nappe system in Western Switzerland is a stack of fold nappes and thrust sheets em-placed at low grade metamorphism. Fold nappes and thrust sheets are also some of the most common features in orogens. Fold nappes are kilometer scaled recumbent folds which feature a weakly deformed normal limb and an intensely deformed overturned limb. Thrust sheets on the other hand are characterized by the absence of overturned limb and can be defined as almost rigid blocks of crust that are displaced sub-horizontally over up to several tens of kilometers. The Morcles and Doldenhom nappe are classic examples of fold nappes and constitute the so-called infra-Helvetic complex in Western and Central Switzerland, respectively. This complex is overridden by thrust sheets such as the Diablerets and Wildhörn nappes in Western Switzerland. One of the most famous example of thrust sheets worldwide is the Glariis thrust sheet in Central Switzerland which features over 35 kilometers of thrusting which are accommodated by a ~1 m thick shear zone. Since the works of the early Alpine geologist such as Heim and Lugeon, the knowledge of these nappes has been steadily refined and today the geometry and kinematics of the Helvetic nappe system is generally agreed upon. However, despite the extensive knowledge we have today of the kinematics of fold nappes and thrust sheets, the mechanical process leading to the emplacement of these nappe is still poorly understood. For a long time geologist were facing the so-called 'mechanical paradox' which arises from the fact that a block of rock several kilometers high and tens of kilometers long (i.e. nappe) would break internally rather than start moving on a low angle plane. Several solutions were proposed to solve this apparent paradox. Certainly the most successful is the theory of critical wedges (e.g. Chappie 1978; Dahlen, 1984). In this theory the orogen is considered as a whole and this change of scale allows thrust sheet like structures to form while being consistent with mechanics. However this theoiy is intricately linked to brittle rheology and fold nappes, which are inherently ductile structures, cannot be created in these models. When considering the problem of nappe emplacement from the perspective of ductile rheology the problem of strain localization arises. The aim of this thesis was to develop and apply models based on continuum mechanics and integrating heat transfer to understand the emplacement of nappes. Models were solved either analytically or numerically. In the first two papers of this thesis we derived a simple model which describes channel flow in a homogeneous material with temperature dependent viscosity. We applied this model to the Morcles fold nappe and to several kilometer-scale shear zones worldwide. In the last paper we zoomed out and studied the tectonics of (i) ductile and (ii) visco-elasto-plastic and temperature dependent wedges. In this last paper we focused on the relationship between basement and cover deformation. We demonstrated that during the compression of a ductile passive margin both fold nappes and thrust sheets can develop and that these apparently different structures constitute two end-members of a single structure (i.e. nappe). The transition from fold nappe to thrust sheet is to first order controlled by the deformation of the basement. -- Le système des nappes helvétiques en Suisse occidentale est un empilement de nappes de plis et de nappes de charriage qui se sont mis en place à faible grade métamorphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement défor-mé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Mordes et la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glariis en Suisse centrale se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. Aujourd'hui la géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général. Malgré cela, les processus mécaniques par lesquels ces nappes se sont mises en place restent mal compris. Pendant toute la première moitié du vingtième siècle les géologues les géologues ont été confrontés au «paradoxe mécanique». Celui-ci survient du fait qu'un bloc de roche haut de plusieurs kilomètres et long de plusieurs dizaines de kilomètres (i.e., une nappe) se fracturera de l'intérieur plutôt que de se déplacer sur une surface frictionnelle. Plusieurs solutions ont été proposées pour contourner cet apparent paradoxe. La solution la plus populaire est la théorie des prismes d'accrétion critiques (par exemple Chappie, 1978 ; Dahlen, 1984). Dans le cadre de cette théorie l'orogène est considéré dans son ensemble et ce simple changement d'échelle solutionne le paradoxe mécanique (la fracturation interne de l'orogène correspond aux nappes). Cette théorie est étroitement lié à la rhéologie cassante et par conséquent des nappes de plis ne peuvent pas créer au sein d'un prisme critique. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la méca-nique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous avons dérivé un modèle d'écoulement dans un chenal d'un matériel homogène dont la viscosité dépend de la température. Nous avons appliqué ce modèle à la nappe de Mordes et à plusieurs zone de cisaillement d'échelle kilométrique provenant de différents orogènes a travers le monde. Dans le dernier article nous avons considéré le problème à l'échelle de l'orogène et avons étudié la tectonique de prismes (i) ductiles, et (ii) visco-élasto-plastiques en considérant les transferts de chaleur. Nous avons démontré que durant la compression d'une marge passive ductile, a la fois des nappes de plis et des nappes de charriages peuvent se développer. Nous avons aussi démontré que nappes de plis et de charriages sont deux cas extrêmes d'une même structure (i.e. nappe) La transition entre le développement d'une nappe de pli ou d'une nappe de charriage est contrôlé au premier ordre par la déformation du socle. -- Le système des nappes helvétiques en Suisse occidentale est un emblement de nappes de plis et de nappes de chaînage qui se sont mis en place à faible grade métamoiphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement déformé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Morcles and la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glarüs en Suisse centrale est certainement l'exemple de nappe de charriage le plus célèbre au monde. Elle se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. La géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général parmi les géologues. Au contraire les processus physiques par lesquels ces nappes sont mises en place reste mal compris. Les sédiments qui forment les nappes alpines se sont déposés à l'ère secondaire et à l'ère tertiaire sur le socle de la marge européenne qui a été étiré durant l'ouverture de l'océan Téthys. Lors de la fermeture de la Téthys, qui donnera naissance aux Alpes, le socle et les sédiments de la marge européenne ont été déformés pour former les nappes alpines. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la mécanique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous nous sommes intéressés à la localisation de la déformation à l'échelle d'une nappe. Nous avons appliqué le modèle développé à la nappe de Morcles et à plusieurs zones de cisaillement provenant de différents orogènes à travers le monde. Dans le dernier article nous avons étudié la relation entre la déformation du socle et la défonnation des sédiments. Nous avons démontré que nappe de plis et nappes de charriages constituent les cas extrêmes d'un continuum. La transition entre nappe de pli et nappe de charriage est intrinsèquement lié à la déformation du socle sur lequel les sédiments reposent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Equivalence classes of normal form games are defined using the geometryof correspondences of standard equilibiurm concepts like correlated, Nash,and robust equilibrium or risk dominance and rationalizability. Resultingequivalence classes are fully characterized and compared across differentequilibrium concepts for 2 x 2 games. It is argued that the procedure canlead to broad and game-theoretically meaningful distinctions of games aswell as to alternative ways of viewing and testing equilibrium concepts.Larger games are also briefly considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many three-dimensional (3-D) structures in rock, which formed during the deformation of the Earth's crust and lithosphere, are controlled by a difference in mechanical strength between rock units and are often the result of a geometrical instability. Such structures are, for example, folds, pinch-and-swell structures (due to necking) or cuspate-lobate structures (mullions). These struc-tures occur from the centimeter to the kilometer scale and the related deformation processes con-trol the formation of, for example, fold-and-thrust belts and extensional sedimentary basins or the deformation of the basement-cover interface. The 2-D deformation processes causing these structures are relatively well studied, however, several processes during large-strain 3-D defor-mation are still incompletely understood. One of these 3-D processes is the lateral propagation of these structures, such as fold and cusp propagation in a direction orthogonal to the shortening direction or neck propagation in direction orthogonal to the extension direction. Especially, we are interested in fold nappes which are recumbent folds with amplitudes usually exceeding 10 km and they have been presumably formed by ductile shearing. They often exhibit a constant sense of shearing and a non-linear increase of shear strain towards their overturned limb. The fold axes of the Morcles fold nappe in western Switzerland plunges to the ENE whereas the fold axes in the more eastern Doldenhorn nappe plunges to the WSW. These opposite plunge direc-tions characterize the Rawil depression (Wildstrubel depression). The Morcles nappe is mainly the result of layer parallel contraction and shearing. During the compression the massive lime-stones were more competent than the surrounding marls and shales, which led to the buckling characteristics of the Morcles nappe, especially in the north-dipping normal limb. The Dolden-horn nappe exhibits only a minor overturned fold limb. There are still no 3-D numerical studies which investigate the fundamental dynamics of the formation of the large-scale 3-D structure including the Morcles and Doldenhorn nappes and the related Rawil depression. We study the 3-D evolution of geometrical instabilities and fold nappe formation with numerical simulations based on the finite element method (FEM). Simulating geometrical instabilities caused by sharp variations of mechanical strength between rock units requires a numerical algorithm that can accurately resolve material interfaces for large differences in material properties (e.g. between limestone and shale) and for large deformations. Therefore, our FE algorithm combines a nu-merical contour-line technique and a deformable Lagrangian mesh with re-meshing. With this combined method it is possible to accurately follow the initial material contours with the FE mesh and to accurately resolve the geometrical instabilities. The algorithm can simulate 3-D de-formation for a visco-elastic rheology. The viscous rheology is described by a power-law flow law. The code is used to study the 3-D fold nappe formation, the lateral propagation of folding and also the lateral propagation of cusps due to initial half graben geometry. Thereby, the small initial geometrical perturbations for folding and necking are exactly followed by the FE mesh, whereas the initial large perturbation describing a half graben is defined by a contour line inter-secting the finite elements. Further, the 3-D algorithm is applied to 3-D viscous nacking during slab detachment. The results from various simulations are compared with 2-D resulats and a 1-D analytical solution. -- On retrouve beaucoup de structures en 3 dimensions (3-D) dans les roches qui ont pour origines une déformation de la lithosphère terrestre. Ces structures sont par exemple des plis, des boudins (pinch-and-swell) ou des mullions (cuspate-lobate) et sont présentés de l'échelle centimétrique à kilométrique. Mécaniquement, ces structures peuvent être expliquées par une différence de résistance entre les différentes unités de roches et sont généralement le fruit d'une instabilité géométrique. Ces différences mécaniques entre les unités contrôlent non seulement les types de structures rencontrées, mais également le type de déformation (thick skin, thin skin) et le style tectonique (bassin d'avant pays, chaîne d'avant pays). Les processus de la déformation en deux dimensions (2-D) formant ces structures sont relativement bien compris. Cependant, lorsque l'on ajoute la troisiéme dimension, plusieurs processus ne sont pas complètement compris lors de la déformation à large échelle. L'un de ces processus est la propagation latérale des structures, par exemple la propagation de plis ou de mullions dans la direction perpendiculaire à l'axe de com-pression, ou la propagation des zones d'amincissement des boudins perpendiculairement à la direction d'extension. Nous sommes particulièrement intéressés les nappes de plis qui sont des nappes de charriage en forme de plis couché d'une amplitude plurikilométrique et étant formées par cisaillement ductile. La plupart du temps, elles exposent un sens de cisaillement constant et une augmentation non linéaire de la déformation vers la base du flanc inverse. Un exemple connu de nappes de plis est le domaine Helvétique dans les Alpes de l'ouest. Une de ces nap-pes est la Nappe de Morcles dont l'axe de pli plonge E-NE tandis que de l'autre côté de la dépression du Rawil (ou dépression du Wildstrubel), la nappe du Doldenhorn (équivalent de la nappe de Morcles) possède un axe de pli plongeant O-SO. La forme particulière de ces nappes est due à l'alternance de couches calcaires mécaniquement résistantes et de couches mécanique-ment faibles constituées de schistes et de marnes. Ces différences mécaniques dans les couches permettent d'expliquer les plissements internes à la nappe, particulièrement dans le flanc inver-se de la nappe de Morcles. Il faut également noter que le développement du flanc inverse des nappes n'est pas le même des deux côtés de la dépression de Rawil. Ainsi la nappe de Morcles possède un important flanc inverse alors que la nappe du Doldenhorn en est presque dépour-vue. A l'heure actuelle, aucune étude numérique en 3-D n'a été menée afin de comprendre la dynamique fondamentale de la formation des nappes de Morcles et du Doldenhorn ainsi que la formation de la dépression de Rawil. Ce travail propose la première analyse de l'évolution 3-D des instabilités géométriques et de la formation des nappes de plis en utilisant des simulations numériques. Notre modèle est basé sur la méthode des éléments finis (FEM) qui permet de ré-soudre avec précision les interfaces entre deux matériaux ayant des propriétés mécaniques très différentes (par exemple entre les couches calcaires et les couches marneuses). De plus nous utilisons un maillage lagrangien déformable avec une fonction de re-meshing (production d'un nouveau maillage). Grâce à cette méthode combinée il nous est possible de suivre avec précisi-on les interfaces matérielles et de résoudre avec précision les instabilités géométriques lors de la déformation de matériaux visco-élastiques décrit par une rhéologie non linéaire (n>1). Nous uti-lisons cet algorithme afin de comprendre la formation des nappes de plis, la propagation latérale du plissement ainsi que la propagation latérale des structures de type mullions causé par une va-riation latérale de la géométrie (p.ex graben). De plus l'algorithme est utilisé pour comprendre la dynamique 3-D de l'amincissement visqueux et de la rupture de la plaque descendante en zone de subduction. Les résultats obtenus sont comparés à des modèles 2-D et à la solution analytique 1-D. -- Viele drei dimensionale (3-D) Strukturen, die in Gesteinen vorkommen und durch die Verfor-mung der Erdkruste und Litosphäre entstanden sind werden von den unterschiedlichen mechani-schen Eigenschaften der Gesteinseinheiten kontrolliert und sind häufig das Resulat von geome-trischen Istabilitäten. Zu diesen strukturen zählen zum Beispiel Falten, Pich-and-swell Struktu-ren oder sogenannte Cusbate-Lobate Strukturen (auch Mullions). Diese Strukturen kommen in verschiedenen Grössenordungen vor und können Masse von einigen Zentimeter bis zu einigen Kilometer aufweisen. Die mit der Entstehung dieser Strukturen verbundenen Prozesse kontrol-lieren die Entstehung von Gerbirgen und Sediment-Becken sowie die Verformung des Kontaktes zwischen Grundgebirge und Stedimenten. Die zwei dimensionalen (2-D) Verformungs-Prozesse die zu den genannten Strukturen führen sind bereits sehr gut untersucht. Einige Prozesse wäh-rend starker 3-D Verformung sind hingegen noch unvollständig verstanden. Einer dieser 3-D Prozesse ist die seitliche Fortpflanzung der beschriebenen Strukturen, so wie die seitliche Fort-pflanzung von Falten und Cusbate-Lobate Strukturen senkrecht zur Verkürzungsrichtung und die seitliche Fortpflanzung von Pinch-and-Swell Strukturen othogonal zur Streckungsrichtung. Insbesondere interessieren wir uns für Faltendecken, liegende Falten mit Amplituden von mehr als 10 km. Faltendecken entstehen vermutlich durch duktile Verscherung. Sie zeigen oft einen konstanten Scherungssinn und eine nicht-lineare zunahme der Scherverformung am überkipp-ten Schenkel. Die Faltenachsen der Morcles Decke in der Westschweiz fallen Richtung ONO während die Faltenachsen der östicher gelegenen Doldenhorn Decke gegen WSW einfallen. Diese entgegengesetzten Einfallrichtungen charakterisieren die Rawil Depression (Wildstrubel Depression). Die Morcles Decke ist überwiegend das Resultat von Verkürzung und Scherung parallel zu den Sedimentlagen. Während der Verkürzung verhielt sich der massive Kalkstein kompetenter als der Umliegende Mergel und Schiefer, was zur Verfaltetung Morcles Decke führ-te, vorallem in gegen Norden eifallenden überkippten Schenkel. Die Doldenhorn Decke weist dagegen einen viel kleineren überkippten Schenkel und eine stärkere Lokalisierung der Verfor-mung auf. Bis heute gibt es keine 3-D numerischen Studien, die die fundamentale Dynamik der Entstehung von grossen stark verformten 3-D Strukturen wie den Morcles und Doldenhorn Decken sowie der damit verbudenen Rawil Depression untersuchen. Wir betrachten die 3-D Ent-wicklung von geometrischen Instabilitäten sowie die Entstehung fon Faltendecken mit Hilfe von numerischen Simulationen basiert auf der Finite Elemente Methode (FEM). Die Simulation von geometrischen Instabilitäten, die aufgrund von Änderungen der Materialeigenschaften zwischen verschiedenen Gesteinseinheiten entstehen, erfortert einen numerischen Algorithmus, der in der Lage ist die Materialgrenzen mit starkem Kontrast der Materialeigenschaften (zum Beispiel zwi-schen Kalksteineinheiten und Mergel) für starke Verfomung genau aufzulösen. Um dem gerecht zu werden kombiniert unser FE Algorithmus eine numerische Contour-Linien-Technik und ein deformierbares Lagranges Netz mit Re-meshing. Mit dieser kombinierten Methode ist es mög-lich den anfänglichen Materialgrenzen mit dem FE Netz genau zu folgen und die geometrischen Instabilitäten genügend aufzulösen. Der Algorithmus ist in der Lage visko-elastische 3-D Ver-formung zu rechnen, wobei die viskose Rheologie mit Hilfe eines power-law Fliessgesetzes beschrieben wird. Mit dem numerischen Algorithmus untersuchen wir die Entstehung von 3-D Faltendecken, die seitliche Fortpflanzung der Faltung sowie der Cusbate-Lobate Strukturen die sich durch die Verkürzung eines mit Sediment gefüllten Halbgraben bilden. Dabei werden die anfänglichen geometrischen Instabilitäten der Faltung exakt mit dem FE Netz aufgelöst wäh-rend die Materialgranzen des Halbgrabens die Finiten Elemente durchschneidet. Desweiteren wird der 3-D Algorithmus auf die Einschnürung während der 3-D viskosen Plattenablösung und Subduktion angewandt. Die 3-D Resultate werden mit 2-D Ergebnissen und einer 1-D analyti-schen Lösung verglichen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the eigenvalue statistics of ensembles of normal random matrices when their order N tends to infinite. In the model, the eigenvalues have uniform density within a region determined by a simple analytic polynomial curve. We study the conformal deformations of equilibrium measures of normal random ensembles to the real line and give sufficient conditions for it to weakly converge to a Wigner measure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic study of magnetoresistance and dc magnetization was conducted in polycrystalline (Ru(1-x)Ir(x))Sr(2)GdCu(2)O(8) [(Ru,Ir)-1212] compounds, for 0 <= x <= 0.15. We found that a deviation from linearity in the normal-state electrical resistivity (rho) curves for temperatures below the magnetic transition temperature T(M) < 130 K can be properly described by a logarithmic term. The prefactor C(x, H) of this anomalous ln T contribution to rho(T) increases linearly with the Ir concentration, and diminishes rapidly with increasing applied magnetic field up to H approximate to 4 T, merging with the C(0,H) curve at higher magnetic fields. Correlation with magnetic susceptibility measurements supports a scenario of local perturbations in the orientation of Ru moments induced in the neighborhood of the Ir ions, therefore acting as scattering centers. The linear dependence of the prefactor C(x,H=0) and the superconducting transition temperature T(SC) on x points to a common source for the resistivity anomaly and the reduction in T(SC), suggesting that the CuO(2) and RuO(2) layers are not decoupled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.