952 resultados para log Gaussian Cox process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

McCullagh and Yang (2006) suggest a family of classification algorithms based on Cox processes. We further investigate the log Gaussian variant which has a number of appealing properties. Conditioned on the covariates, the distribution over labels is given by a type of conditional Markov random field. In the supervised case, computation of the predictive probability of a single test point scales linearly with the number of training points and the multiclass generalization is straightforward. We show new links between the supervised method and classical nonparametric methods. We give a detailed analysis of the pairwise graph representable Markov random field, which we use to extend the model to semi-supervised learning problems, and propose an inference method based on graph min-cuts. We give the first experimental analysis on supervised and semi-supervised datasets and show good empirical performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Estatística e Investigação Operacional (Probabilidades e Estatística), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finitedimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets. Copyright 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finite-dimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of identifying and explaining behavioral differences between two business process event logs. The paper presents a method that, given two event logs, returns a set of statements in natural language capturing behavior that is present or frequent in one log, while absent or infrequent in the other. This log delta analysis method allows users to diagnose differences between normal and deviant executions of a process or between two versions or variants of a process. The method relies on a novel approach to losslessly encode an event log as an event structure, combined with a frequency-enhanced technique for differencing pairs of event structures. A validation of the proposed method shows that it accurately diagnoses typical change patterns and can explain differences between normal and deviant cases in a real-life log, more compactly and precisely than previously proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased interest in the area of process improvement persuaded Rabobank Group ICT in examining its own Change-process in order to improve its competitiveness. The group is looking for answers about the effectiveness of changes applied as part of this process, with particular interest toward the presence of predictive patterns and their parameters. We conducted an analysis of the log using well established process mining techniques (i.e. Fuzzy Miner). The results of the analysis conducted on the log of the process show that a visible impact is missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study two marked point process models based on the Cox process. These models are used to describe the probabilistic structure of the rainfall intensity process. Mathematical formulation of the models is described and some second-moment characteristics of the rainfall depth, and aggregated processes are considered. The derived second-order properties of the accumulated rainfall amounts at different levels of aggregation are used in order to examine the model fit. A brief data analysis is presented. Copyright © 1998 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uma forma interessante para uma companhia que pretende assumir uma posição comprada em suas próprias ações ou lançar futuramente um programa de recompra de ações, mas sem precisar dispor de caixa ou ter que contratar um empréstimo, ou então se protegendo de uma eventual alta no preço das ações, é através da contratação de um swap de ações. Neste swap, a companhia fica ativa na variação de sua própria ação enquanto paga uma taxa de juros pré ou pós-fixada. Contudo, este tipo de swap apresenta risco wrong-way, ou seja, existe uma dependência positiva entre a ação subjacente do swap e a probabilidade de default da companhia, o que precisa ser considerado por um banco ao precificar este tipo de swap. Neste trabalho propomos um modelo para incorporar a dependência entre probabilidades de default e a exposição à contraparte no cálculo do CVA para este tipo de swap. Utilizamos um processo de Cox para modelar o instante de ocorrência de default, dado que a intensidade estocástica de default segue um modelo do tipo CIR, e assumindo que o fator aleatório presente na ação subjacente e que o fator aleatório presente na intensidade de default são dados conjuntamente por uma distribuição normal padrão bivariada. Analisamos o impacto no CVA da incorporação do riscowrong-way para este tipo de swap com diferentes contrapartes, e para diferentes prazos de vencimento e níveis de correlação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spike detection in neural recordings is the initial step in the creation of brain machine interfaces. The Teager energy operator (TEO) treats a spike as an increase in the `local' energy and detects this increase. The performance of TEO in detecting action potential spikes suffers due to its sensitivity to the frequency of spikes in the presence of noise which is present in microelectrode array (MEA) recordings. The multiresolution TEO (mTEO) method overcomes this shortcoming of the TEO by tuning the parameter k to an optimal value m so as to match to frequency of the spike. In this paper, we present an algorithm for the mTEO using the multiresolution structure of wavelets along with inbuilt lowpass filtering of the subband signals. The algorithm is efficient and can be implemented for real-time processing of neural signals for spike detection. The performance of the algorithm is tested on a simulated neural signal with 10 spike templates obtained from [14]. The background noise is modeled as a colored Gaussian random process. Using the noise standard deviation and autocorrelation functions obtained from recorded data, background noise was simulated by an autoregressive (AR(5)) filter. The simulations show a spike detection accuracy of 90%and above with less than 5% false positives at an SNR of 2.35 dB as compared to 80% accuracy and 10% false positives reported [6] on simulated neural signals.