952 resultados para locking screw


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atrophic mandible fractures are frequently a challenge to stabilize. This study evaluated, through mechanical testing in vitro, the number of locking screws that is sufficient to withstand loading when applied with a locking reconstruction plate in the fixation of atrophic mandible fractures. Polyurethane mandibles with a simulated linear fracture at the midline were used as substratum. Results show that resistance of the fixation is poor when one and two screws are used on each side of the fracture. Three screws on each side of the fracture significantly increases the resistance to displacement. However, no additional strength is added to the construct when more than three screws per side are used. © 2013 International Association of Oral and Maxillofacial Surgeons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Currently available volar locking plates for the treatment of distal radius fractures incorporate at least two distal screw rows for fixation of the metaphyseal fragment and have a variable-angle locking mechanism which allows placement of the screws in various directions There is, however no evidence that these plates translate into better outcomes or have superior biomechanical properties to first generation plates, which had a single distal screw row and fixed-angle locking. The aim of our biomechanical study was to compare fixed-angle single-row plates with variable-angle multi-row plates to clarify the optimal number of locking screws. MATERIALS AND METHODS: Five different plate-screw combinations of three different manufacturers were tested, each group consisting of five synthetic fourth generation distal radius bones. An AO type C2 fracture was created and the fractures were plated according to each manufacturer's recommendations. The specimens then underwent cyclic and load-to-failure testing. An optical motion analysis system was used to detect displacement of fragments. RESULTS: No significant differences were detected after cyclic loading as well as after load-to-failure testing, neither in regard to axial deformation, implant rigidity or maximum displacement. The fixed-angle single-row plate showed the highest pre-test rigidity, least increase in post-testing rigidity and highest load-to-failure rigidity and least radial shortening. The radial shortening of plates with two distal screw rows was 3.1 and 4.3 times higher, respectively, than that of the fixed-angle single-row plate. CONCLUSION: The results of our study indicate that two distal screw rows do not add to construct rigidity and resistance against loss of reduction. Well conducted clinical studies based on the findings of biomechanical studies are necessary to determine the optimal number of screws necessary to achieve reproducibly good results in the treatment of distal radius fractures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This in vitro study evaluated the influence of the type of miniplate and the number of screws installed in the proximal and distal segments on the stability and resistance of Champy's osteosynthesis in mandibular angle fractures. Sixty polyurethane hemimandibles with bone-like consistency were randomly assigned to four groups (n = 15) and sectioned in the mandibular angle region to simulate fracture. The bone segments were fixed by different osteosynthesis methods using 2.0 mm miniplates and 2.0 mm x 6 mm rnonocortical screws. In groups 1 and 2, two conventional (G1) or locking (G2) screws were installed in each bone segment using a conventional (G1) or a locking (02) straight miniplate; in groups 3 and 4, three conventional (03) or locking (04) screws were installed in the proximal segment and four conventional (G3) or locking (04) screws were installed in the distal segment using a conventional (G3) or a locking (G4) seven-hole straight miniplate. The hemimandibles were loaded in compressive strength until a 4 mm displacement occurred between the segments, vertically or horizontally. Locking plate/screw systems provided significantly greater resistance to displacement than conventional ones (p < .01). Locking miniplates offered more resistance than conventional miniplates. Long locking miniplates provided greater stability than short ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The aim of this in vitro study was to assess the biomechanical stability of 9 different osteosynthesis methods after sagittal split ramus osteotomy by simulating the masticatory forces and using a 3-point biomechanical test method.Materials and Methods: Forty-five polyurethane hemimandibles with bone-like consistency were randomly assigned to 9 groups (n = 5) and subjected to sagittal split ramus osteotomy. After 4-mm advancement of the distal segment, the bone segments were fixed by different osteosynthesis methods using 2.0-mm miniplate/screw systems: group A, one 4-hole conventional straight miniplate; group B, one 4-hole locking straight miniplate; group C, one 4-hole conventional miniplate and one bicortical screw; group D, one 4-hole locking miniplate and 1 bicortical screw; group E, one 6-hole conventional straight miniplate; group F, one 6-hole locking straight miniplate; group (3: two 4-hole conventional straight miniplates; group H. two 4-hole locking straight miniplates; and group 1, 3 bicortical screws in an inverted-L. pattern. All models were mounted on a base especially constructed for this purpose. Using a 3-point biomechanical test model, the hemimandibles were loaded in compressive strength in an Instron machine (Norwood, MA) until a 3-mm displacement occurred between segments vertically or horizontally. Data were analyzed by analysis of variance and Tukey test (alpha = 1%).Results: The multiparametric comparison of the groups showed a statistically significant difference (P<.01) between groups that used 2 miniplates (groups G and H), 1 miniplate and 1 bicortical screw (groups C and D), and only bicortical screws (group D compared with groups that used only 1 miniplate with 2 screws per segment (groups A and B) and 3 screws per segment (groups E and F).Conclusion: The placement of 2.0-mm-diameter bicortical screws in the retromolar region, associated or not with conventional and locking miniplates with monocortical screws, promoted a better stabilization of bone segments. Locking miniplates presented a better performance in bone fixation in all groups. (C) 2010 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 68:724-730, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The core structure of <110] superdislocations in L10 TiAl was investigated with a view to clarifying their dissociation abilities and the mechanisms by which they may become sessile by self-locking. A detailed knowledge of the fine structure of dislocations is essential in analysing the origin of the various deformation features. Atomistic simulation of the core structure and glide of the screw <110] superdislocation was carried out using a bond order potential for ?-TiAl. The core structure of the screw <110] superdislocation was examined, starting with initial unrelaxed configurations corresponding to various dislocation dissociations discussed in the literature. The superdislocation was found to possess in the screw orientation either planar (glissile) or non-planar (sessile) core structures. The response of the core configurations to externally applied shear stress was studied. Some implications were considered of the dissociated configurations and their response to externally applied stress on dislocation dynamics, including the issue of dislocation decomposition, the mechanism of locking and the orientation dependence of the dislocation substructure observed in single-phase ?-TiAl. An unexpectedly rich and complex set of candidate core structures, both planar and non-planar, was found, the cores of which may transform under applied stress with consequent violation of Schmid's law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Among the locked internal fixators is one denominated S.P.S. (Synthesis Pengo System) Free-Block, which was designed with a locking ring that allows the screw to be locked and positioned obliquely. Due to the paucity of biomechanical studies on this system, the present work aimed to evaluate the influence of locked screw angulation on the resistance of the S.P.S. Free--Block plate. Methods: Forty synthetic bone cylinders with 10 mm fracture gap were used. Forty seven-hole 3.5 mm stainless steel plates (two AO-like dynamic compression holes and five locked holes) were assembled according to the orientation of the locked screws: mono cortical screws were positioned at 90° to the long axis of the cylinder (Group 1), and monocortical screws were positioned at 70° to its cylinder long axis (Group 2). In both groups, AO-like dynamic compression hole screws were positioned bicortically and neutrally. For each group, six specimens were tested until failure, three in bending and three in compression, to determine the loads for fatigue testing. Subsequently, for each group, 14 specimens were tested for failure --seven by bending and seven in compression. Results: No significant failure differences were observed between Groups 1 and 2 under static-loading or fatigue test. Clinical significance: In a fracture gap model the orientation of the locked monocortical screws did not show any influence on the mechanical performance of the S.P.S. Free-Block to tests of axial compression and four-point bending. © Schattauer 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonunions of pediatric subtrochanteric femur fractures are exceedingly rare and have to date not been reported in the literature. We present the case of an 11-year-old boy who developed such a nonunion after open reduction internal fixation using a pediatric locked proximal femur plate. Using an adult proximal humerus locking plate, adequate proximal fixation of the nonunion was obtained. Furthermore, previously placed distal screw holes were safely bridged and the biomechanical environment around the nonunion site improved. Uneventful healing was possible with the use of adjuvant bone grafting. No short- or midterm complications occurred. Although other implants can certainly be adapted to a use different than that of its original design, the present case suggests that adult proximal humerus locking plates may be a safe option for revision surgery of the proximal pediatric femur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Stable reconstruction of proximal femoral (PF) fractures is especially challenging due to the peculiarity of the injury patterns and the high load-bearing requirement. Since its introduction in 2007, the PF-locking compression plate (LCP) 4.5/5.0 has improved osteosynthesis for intertrochanteric and subtrochanteric fractures of the femur. This study reports our early results with this implant. METHODS Between January 2008 and June 2010, 19 of 52 patients (12 males, 7 females; mean age 59 years, range 19-96 years) presenting with fractures of the trochanteric region were treated at the authors' level 1 trauma centre with open reduction and internal fixation using PF-LCP. Postoperatively, partial weight bearing was allowed for all 19 patients. Follow-up included a thorough clinical and radiological evaluation at 1.5, 3, 6, 12, 24, 36 and 48 months. Failure analysis was based on conventional radiological and clinical assessment regarding the type of fracture, postoperative repositioning, secondary fracture dislocation in relation to the fracture constellation and postoperative clinical function (Merle d'Aubigné score). RESULTS In 18 patients surgery achieved adequate reduction and stable fixation without intra-operative complications. In one patient an ad latus displacement was observed on postoperative X-rays. At the third month follow-up four patients presented with secondary varus collapse and at the sixth month follow-up two patients had 'cut-outs' of the proximal fragment, with one patient having implant failure due to a broken proximal screw. Revision surgeries were performed in eight patients, one patient receiving a change of one screw, three patients undergoing reosteosynthesis with implantation of a condylar plate and one patient undergoing hardware removal with secondary implantation of a total hip prosthesis. Eight patients suffered from persistent trochanteric pain and three patients underwent hardware removal. CONCLUSIONS Early results for PF-LCP osteosynthesis show major complications in 7 of 19 patients requiring reosteosynthesis or prosthesis implantation due to secondary loss of reduction or hardware removal. Further studies are required to evaluate the limitations of this device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To compare the free-hand (FH) technique of placing interlocking screws to a commercially available electromagnetic (EM) targeting system in terms of operating time, radiation dose, and accuracy of screw placement. METHODS Between September 2011 and July 2012, we prospectively randomized 100 consecutive femur shaft fractures in 99 patients requiring intramedullary nails to either FH using fluoroscopy (n = 43) or EM targeting (n = 38; Sureshot). SETTING Single Level 1 University Hospital Trauma Center. MAIN OUTCOME MEASUREMENTS The 2 groups were assessed for distal locking with respect to time, radiation, and accuracy. RESULTS Eight-one fractures had data accurately recorded (38 EM/43 FH). The average total operative time was 50 minutes (range, 25-88 minutes; SD, 13.9 minutes) for the FH group and 57 minutes (range, 40-103 minutes; SD, 16.12 minutes) for the EM group. The average time for distal locking was 10 minutes (range, 4-16 minutes; SD, 3.56 minutes) with FH and 11 minutes (range, 6-28 minutes; SD, 10.24 minutes) with EM. Average radiation dose for distal locking was significantly less (P < 0.0001) for EM at 230.54 μGy (range, 51-660 μGy; SD, 0.17 μGy) compared with 690.27 μGy (range, 200-2310 μGy; SD, 0.52 μGy) for FH. There were 2 misplaced drill bits in FH and 3 in EM. This was not statistically significant (P = 0.888). CONCLUSIONS The electromagnetic targeting device (Sureshot) significantly reduced radiation exposure during placement of distal interlocking screws, without sacrificing operative time, and was equivalent in accuracy when compared with the FH technique. LEVEL OF EVIDENCE Therapeutic level II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Locking compression plates are used in various configurations with lack of detailed information on consequent bone healing. Study design In this in vivo study in sheep 5 different applications of locking compression plate (LCP) were tested using a 45° oblique osteotomy simulating simple fracture pattern. 60 Swiss Alpine sheep where assigned to 5 different groups with 12 sheep each (Group 1: interfragmentary lag screw and an LCP fixed with standard cortex screws as neutralisation plate; Group 2: interfragmentary lag screw and LCP with locking head screws; Group 3: compression plate technique (hybrid construct); Group 4: internal fixator without fracture gap; Group 5: internal fixator with 3 mm gap at the osteotomy site). One half of each group (6 sheep) was monitored for 6 weeks, and the other half (6 sheep) where followed for 12 weeks. Methods X-rays at 3, 6, 9 and 12 weeks were performed to monitor the healing process. After sacrifice operated tibiae were tested biomechanically for nondestructive torsion and compared to the tibia of the healthy opposite side. After testing specimens were processed for microradiography, histology, histomorphometry and assessment of calcium deposition by fluorescence microscopy. Results In all groups bone healing occurred without complications. Stiffness in biomechanical testing showed a tendency for higher values in G2 but results were not statistically significant. Values for G5 were significantly lower after 6 weeks, but after 12 weeks values had improved to comparable results. For all groups, except G3, stiffness values improved between 6 and 12 weeks. Histomorphometrical data demonstrate endosteal callus to be more marked in G2 at 6 weeks. Discussion and conclusion All five configurations resulted in undisturbed bone healing and are considered safe for clinical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To compare the initial stability and stability after fatigue of three different locking systems (Synthes(®), Stryker(®) and Medartis(®)) for mandibular fixation and reconstruction. METHOD Standard mandible locking plates with identical profile height (1,5 mm), comparable length and screws with identical diameter (2,0 mm) were used. Plates were fixed with six screws according a preparation protocol. Four point bending tests were then performed using artificial bone material to compare their initial stability and failure limit under realistic loading conditions. Loading of the plates was performed using of a servo hydraulic driven testing machine. The stiffness of the implant/bone construct was calculated using a linear regression on the experimental data included in a range of applied moment between 2 Nm and 6 Nm. RESULTS No statistical difference in the elastic stiffness was visible between the three types of plate. However, differences were observed between the systems concerning the maximal load supported. The Stryker and Synthes systems were able to support a significantly higher moment. CONCLUSION For clinical application all systems show good and reliable results. Practical aspects such as handling, possible angulation of screw fixation, possibility of screw/plate removal, etc. may favour one or the other plating system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To evaluate use of a surgical technique commonly used in humans for treatment of cervical spondylotic myelopathy (CSM) in dogs. DESIGN Prospective case series. ANIMALS Dogs with CSM (n=10). METHODS Dogs weighing >30 kg that had CSM at 1 vertebral articulation were eligible for inclusion. Dogs had vertebral column distraction/fusion performed using a cortical ring allograft, cancellous autograft, and a spinal locking plate. Dogs were evaluated temporally by repeat neurological examinations and by client perception of postsurgical outcome, determined by telephone interview. RESULTS Nine dogs survived the immediate postoperative period. Seven of 8 dogs had moderate to complete improvement without recurrence (mean follow-up, 2.48 years). The most common postsurgical complications were screw loosening (n=4) and plate shifting (2), neither of which required surgical revision. One dog had pseudoarthrosis that may have negatively impacted outcome. CONCLUSION Treatment of single level CSM in dogs with ring allograft and a spinal locking plate system may lead to successful outcomes. The major problems encountered with included cost of the implants and adjusting the system designed for humans to fit the vertebral column of a dog. CLINICAL RELEVANCE For dogs with CSM at a single level, the use of a spinal locking plate in combination with a cortical ring allograft can be an effective surgical treatment. Costs of the implants as well as anatomic differences in dogs make this type of surgery less appealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.