896 resultados para localized aggressive periodontitis
Resumo:
Aim The microbial profile of localized aggressive periodontitis (LAgP) has not yet been determined. Therefore, the aim of this study was to evaluate the subgingival microbial composition of LAgP. Material and Methods One hundred and twenty subjects with LAgP (n=15), generalized aggressive periodontitis (GAgP, n=25), chronic periodontitis (ChP, n=30) or periodontal health (PH, n=50) underwent clinical and microbiological assessment. Nine subgingival plaque samples were collected from each subject and analysed for their content of 38 bacterial species using checkerboard DNA-DNA hybridization. Results Red complex and some orange complex species are the most numerous and prevalent periodontal pathogens in LAgP. The proportions of Aggregatibacter actinomycetemcomitans were elevated in shallow and intermediate pockets of LAgP subjects in comparison with those with GAgP or ChP, but not in deep sites. This species also showed a negative correlation with age and with the proportions of red complex pathogens. The host-compatible Actinomyces species were reduced in LAgP. Conclusion A. actinomycetemcomitans seems to be associated with the onset of LAgP, and Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Eubacterium nodatum and Prevotella intermedia play an important role in disease progression. Successful treatment of LAgP would involve a reduction in these pathogens and an increase in the Actinomyces species.
Resumo:
We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon Lefevre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early,onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p. V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 mu moles/mg/min vs. 1,678.7 +/- SD 527.2 mu moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS. (C) 2004 Wiley-Liss, Inc.
Resumo:
BACKGROUND: Susceptibility to aggressive periodontitis (AgP) is influenced by genetic as well as environmental factors. Studies linking gene variants to AgP have been mainly centred in developed countries with limited data from Africa.
AIM: To investigate whether previously reported candidate gene associations with AgP could be replicated in a population from Sudan.
METHODS: The investigation was a case-control design. Cases with AgP (n = 132) and controls (n = 136) were identified from patients attending the Periodontal Department in Khartoum Dental Hospital. Genotyping was performed using the Sequenom MassARRAY iPLEX platform. Analysis focused on gene variants with a minor allele frequency (MAF) > 25% in the Sudanese subjects that had previously been reported to be associated with AgP.
RESULTS: One candidate gene rs1537415 (GLT6D1) was significantly associated with AgP, OR = 1.50 (95% CI 1.04-2.17), p = 0.0295 (increasing to p = 0.09 after correction for multiple testing). The association strengthened to OR = 1.56 (95% CI 1.15-2.16), p = 0.0042 when the controls were supplemented with data from the Hap map for the Yoruba in Ibadan (n = 147) and remained significant (p = 0.013) after correction for multiple testing.
CONCLUSION: The study independently replicated the finding that rs1537415, a variant in glycosyl transferase gene GLT6D1, is associated with AgP and provided the first report of genetic associations with AgP in a Sudanese population.
Resumo:
Introduction: The chromosome 9p21 locus has been identified as a marker of coronary artery disease. In this locus studies have focused on variations in the ANRIL gene that has also been identified as a strong candidate for association with aggressive periodontitis (AgP).
Objective: To investigate possible associations between gene variants of ANRIL and AgP in European and African populations.
Methods: European AgP cases (n= 213) and age-matched periodontally healthy controls (n= 81) were recruited from centres in the United Kingdom (Belfast, Glasgow, Newcastle and London). African AgP cases (n= 95) and controls (n= 105) were recruited in Khartoum, Sudan. Five single nucleotide polymorphisms (SNPs) in ANRIL were genotyped using Sequenom and analysed using Haploview with permutation testing to correct for multiple candidates. Odds ratios (OR) and 95% confidence intervals (95%CI) were calculated.
Results: In the European subjects there was a significant association between rs518394 (p=0.0013; OR = 1.81, 95%CI 1.26-2.61) and rs1333049 (p=0.0028; OR = 1.75, 95%CI 1.21-2.52) and AgP. These associations remained significant after permutation testing. In addition there was an association between rs 1360590 (p=0.035) and AgP in females. In the African subjects there was a significant association between only one SNP rs1537415 and AgP (p=0.036; OR = 1.59, 95%CI 1.04-2.43), however, this was not significant following permutation testing. There were no significant associations with rs3217992 in either population.
Conclusions: SNP variants in the ANRIL locus were shown to be significantly associated with AgP in a European population and for the first time in an African population confirming this as the best replicated locus for aggressive periodontitis.
Resumo:
Background: Several bacterial species have been identified as being associated with aggressive periodontitis (AgP) notably Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg). There are limited data on bacterial associations with AgP in African populations. Objective: To investigate possible associations between specific bacteria and AgP in a Sudanese population. Methods: Subgingival plaque samples were collected from 93 (20 male, 73 female) Sudanese patients diagnosed with AgP and from 72 (23 male, 48 female) periodontally healthy Sudanese controls. Quantitative PCR was used to identify Aa, Pg, Treponema denticola (Td) and Fusobacterium nucleatum (Fn). The prevalence of these bacterial species was compared using Chi-square analysis. Odds ratios (OR) were calculated using standard methods. Results: The cases with AgP were well matched in age with the controls: 24.8 (SD 5.1) compared with 23.5 (SD 3.7) years, p=0.07. There was a significantly higher prevalence of Pg in AgP (73%) than in the controls (33%), p<0.0001. The OR for Pg to be associated with AgP was 5.44 (95% confidence intervals 2.78-10.64). In 26 (38%) of the AgP cases positive for Pg there were low levels of this bacterium (<100 copies). Both Td and Fn were identified in virtually all (>95%) the plaque samples studied from both AgP and controls. Aa was the least frequently identified species and was present in only 28% of AgP and 18% of controls, p=0.14. The OR for Aa to be associated with AgP was slightly increased at 1.76 (95% CI 0.83-3.74), however, this was not significant (p=0.14). Conclusion: In the Sudanese subjects studied Pg but not Aa was associated with AgP. There were very low levels of Pg in many of the plaque samples from AgP.
Resumo:
Background: Aggressive periodontitis is a specific form of periodontal disease that is characterized by rapid attachment loss and bone destruction. Cytokine profiles are of considerable value when studying disease course during treatment. The aim of this trial was to investigate cytokine levels in the gingival crevicular fluid (GCF) of patients with aggressive periodontitis, after treatment with photodynamic therapy (PDT) or scaling and root planing (SRP), in a split-mouth design on -7, 0, +1, +7, +30, and +90 days. Methods: Ten patients were randomly treated with PDT using a laser source associated with a photosensitizer or SRP with hand instruments. GCF samples were collected, and the concentrations of tumor necrosis factor-alpha (TNF-alpha) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by enzyme-linked immunosorbent assays. The data were analyzed using generalized estimating equations to test the associations among treatments, evaluated parameters, and experimental times (alpha = 0.05). Results: Non-surgical periodontal treatment with PDT or SRP led to statistically significant reductions in TNF-alpha level 30 days following treatment. There were similar levels of TNF-alpha and RANKL at the different time points in both groups, with no statistically significant differences. Conclusion: SRP and PDT had similar effects on crevicular TNF-alpha and RANKL levels in patients with aggressive periodontitis. J Periodontol 2009;80:98-105.
Resumo:
Background/aim: The purpose of this study was to determine the bacterial diversity in the subgingival plaque of subjects with generalized aggressive periodontitis by using culture-independent molecular methods based on 16S ribosomal DNA cloning. Methods: Samples from 10 subjects with generalized aggressive periodontitis were selected. DNA was extracted and the 16S rRNA gene was amplified with the universal primer pairs 9F and 1525R. Amplified genes were cloned, sequenced, and identified by comparison with known 16S rRNA sequences. Results: One hundred and ten species were identified from 10 subjects and 1007 clones were sequenced. Of these, 70 species were most prevalent. Fifty-seven percent of the clone (40 taxa) sequences represented phylotypes for which no cultivated isolates have been reported. Several species of Selenomonas and Streptococcus were found at high prevalence and proportion in all subjects. Overall, 50% of the clone libraries were formed by these two genera. Selenomonas sputigena, the species most commonly detected, was found in nine of 10 subjects. Other species of Selenomonas were often present at high levels, including S. noxia, Selenomonas sp. EW084, Selenomonas sp. EW076, Selenomonas FT050, Selenomonas sp. P2PA_80, and Selenomonas sp. strain GAA14. The classical putative periodontal pathogens, such as, Aggregatibacter actinomycetemcomitans, was below the limit of detection and was not detected. Conclusion: These data suggest that other species, notably species of Selenomonas, may be associated with disease in generalized aggressive periodontitis subjects.
Resumo:
P>Aim To investigate the diversity, levels and proportions of Archaea in the subgingival biofilm of generalized aggressive periodontitis (GAgP; n=30) and periodontally healthy (PH; n=30) subjects. Materials and methods Diversity was determined by sequencing archaeal 16S rRNA gene libraries from 20 samples (10/group). The levels and proportions of Archaea were analysed by quantitative PCR (qPCR) in four and two samples/subject in GAgP and PH groups, respectively. Results Archaea were detected in 27/28 subjects and 68% of the sites of the GAgP group, and in 26/30 subjects and 58.3% sites of the PH group. Methanobrevibacter oralis was found in all 20 samples studied, Methanobacterium curvum/congolense in three GAgP and six PH samples, and Methanosarcina mazeii in four samples from each group. The levels and proportions of Archaea were higher in GAgP than in PH, whereas no differences were observed between the two probing depth category sites from the GAgP group. Conclusion Archaea were frequently found in subjects with periodontal health and GAgP, especially M. oralis. However, the higher levels and proportions (Archaea/total prokaryotes) of this domain observed in GAgP in comparison with PH subjects indicate a possible role of some of these microorganisms as an environmental modifier in GAgP.
Resumo:
Background and Objective: Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. Material and Methods: Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. Results: Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. Conclusion: Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Resumo:
International Journal of Paediatric Dentistry 2012; 22: 310316 Background. Generalized aggressive periodontitis (GAP) in primary teeth is a rare periodontal disease that occurs during or soon after eruption of the primary teeth. An association with systemic diseases is a possibility. Case Report. A 4-year-old Brazilian girl presented with GAP involving the entire primary dentition. The patient and her parents and sister were subjected to microbiological testing to identify the microorganisms involved in the disease. The patient underwent tooth extraction to eradicate the disease and received a prosthesis for the restoration of masticatory function. After the permanent teeth erupted, fixed orthodontic appliances were place to restore dental arch form and occlusion. Conclusions. The results show the importance of an early diagnosis of GAP and of a multidisciplinary approach involving laboratory and clinical management to treat the disease and to restore masticatory function, providing a better quality of life for patients.
Resumo:
Background: Bacterial constituents, such as Gram-negative derived lipopolysaccharide (LPS), can initiate inflammatory bone loss through induction of host-derived inflammatory cytokines. The aim of this study was to establish a model of aggressive inflammatory alveolar bone loss in rats using LPS derived from the periodontal pathogen Actinobacillus actinomycetemcomitans.Methods: Eighteen female Sprague-Dawley rats were divided into LPS test (N = 12) and saline control (N = 6) groups. All artimals received injections to the palatal molar gingiva three times per week for 8 weeks. At 8 weeks, linear and volumetric alveolar bone loss was measured by micro-computed tomography (mu CT). The prevalence of inflammatory infiltrate, proinflammatory cytokines, and osteoclasts was assessed from hematoxylin and eosin, immunohistochemical, or tartrate-resistant acid phosphatase (TRAP)-stained sections. Statistical analysis was performed.Results: A. actinomycetemcomitans LPS induced severe bone loss over 8 weeks, whereas control groups were unchanged. Linear and volumetric analysis of maxillae by mu CT indicated significant loss of bone with LPS, administration. Histologic examination revealed increased inflammatory infiltrate, significantly increased immunostaining for interleukin IL-6 and -1 beta and tumor necrosis factor-alpha, and more TRAP-positive osteoclasts in the LPS group compared to controls.Conclusion: Oral injections of LPS derived from the periodontal pathogen A. actinomycetemcomitans can induce severe alveolar bone loss and proinflammatory cytokine production in rats by 8 weeks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)