953 resultados para local potential approximation
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria
Resumo:
We apply a self-energy-corrected local density approximation (LDA) to obtain corrected bulk band gaps and to study the band offsets of AlAs grown on GaAs (AlAs/GaAs). We also investigate the Al(x)Ga(1-x)As/GaAs alloy interface, commonly employed in band gap engineering. The calculations are fully ab initio, with no adjustable parameters or experimental input, and at a computational cost comparable to traditional LDA. Our results are in good agreement with experimental values and other theoretical studies. Copyright (C) EPLA, 2011
Resumo:
A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.
Resumo:
Wir analysieren die Rolle von "Hintergrundunabhängigkeit" im Zugang der effektiven Mittelwertwirkung zur Quantengravitation. Wenn der nicht-störungstheoretische Renormierungsgruppen-(RG)-Fluß "hintergrundunabhängig" ist, muß die Vergröberung durch eine nicht spezifizierte, variable Metrik definiert werden. Die Forderung nach "Hintergrundunabhängigkeit" in der Quantengravitation führt dazu, daß die funktionale RG-Gleichung von zusätzlichen Feldern abhängt; dadurch unterscheidet sich der RG-Fluß in der Quantengravitation deutlich von dem RG-Fluß einer gewöhnlichen Quantentheorie, deren Moden-Cutoff von einer starren Metrik abhängt. Beispielsweise kann in der "hintergrundunabhängigen" Theorie ein Nicht-Gauß'scher Fixpunkt existieren, obwohl die entsprechende gewöhnliche Quantentheorie keinen solchen entwickelt. Wir untersuchen die Bedeutung dieses universellen, rein kinematischen Effektes, indem wir den RG-Fluß der Quanten-Einstein-Gravitation (QEG) in einem "konform-reduzierten" Zusammenhang untersuchen, in dem wir nur den konformen Faktor der Metrik quantisieren. Alle anderen Freiheitsgrade der Metrik werden vernachlässigt. Die konforme Reduktion der Einstein-Hilbert-Trunkierung zeigt exakt dieselben qualitativen Eigenschaften wie in der vollen Einstein-Hilbert-Trunkierung. Insbesondere besitzt sie einen Nicht-Gauß'schen Fixpunkt, der notwendig ist, damit die Gravitation asymptotisch sicher ist. Ohne diese zusätzlichen Feldabhängigkeiten ist der RG-Fluß dieser Trunkierung der einer gewöhnlichen $phi^4$-Theorie. Die lokale Potentialnäherung für den konformen Faktor verallgemeinert den RG-Fluß in der Quantengravitation auf einen unendlich-dimensionalen Theorienraum. Auch hier finden wir sowohl einen Gauß'schen als auch einen Nicht-Gauß'schen Fixpunkt, was weitere Hinweise dafür liefert, daß die Quantengravitation asymptotisch sicher ist. Das Analogon der Metrik-Invarianten, die proportional zur dritten Potenz der Krümmung ist und die die störungstheoretische Renormierbarkeit zerstört, ist unproblematisch für die asymptotische Sicherheit der konform-reduzierten Theorie. Wir berechnen die Skalenfelder und -imensionen der beiden Fixpunkte explizit und diskutieren mögliche Einflüsse auf die Vorhersagekraft der Theorie. Da der RG-Fluß von der Topologie der zugrundeliegenden Raumzeit abhängt, diskutieren wir sowohl den flachen Raum als auch die Sphäre. Wir lösen die Flußgleichung für das Potential numerisch und erhalten Beispiele für RG-Trajektorien, die innerhalb der Ultraviolett-kritischen Mannigfaltigkeit des Nicht-Gauß'schen Fixpunktes liegen. Die Quantentheorien, die durch einige solcher Trajektorien definiert sind, zeigen einen Phasenübergang von der bekannten (Niederenergie-) Phase der Gravitation mit spontan gebrochener Diffeomorphismus-Invarianz zu einer neuen Phase von ungebrochener Diffeomorphismus-Invarianz. Diese Hochenergie-Phase ist durch einen verschwindenden Metrik-Erwartungswert charakterisiert.
Resumo:
In this work the fundamental ideas to study properties of QFTs with the functional Renormalization Group are presented and some examples illustrated. First the Wetterich equation for the effective average action and its flow in the local potential approximation (LPA) for a single scalar field is derived. This case is considered to illustrate some techniques used to solve the RG fixed point equation and study the properties of the critical theories in D dimensions. In particular the shooting methods for the ODE equation for the fixed point potential as well as the approach which studies a polynomial truncation with a finite number of couplings, which is convenient to study the critical exponents. We then study novel cases related to multi field scalar theories, deriving the flow equations for the LPA truncation, both without assuming any global symmetry and also specialising to cases with a given symmetry, using truncations based on polynomials of the symmetry invariants. This is used to study possible non perturbative solutions of critical theories which are extensions of known perturbative results, obtained in the epsilon expansion below the upper critical dimension.
Resumo:
The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.
Resumo:
An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkur approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from ~100 eV up to ~5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.
Resumo:
In this work we analyze the spin-polarized charge density distribution in the GeMn diluted ferromagnetic semiconductors (DFS). The calculations are performed within a self-consistent k.p method, in which the exchange correlation effects in the local density approximation, as well as the strain effects due to the lattice mismatch, are taken into account. Our findings show that the extra confinement potential provided by the barriers and the variation of the Mn content in the DFS are responsible for a separation between the different spin charge densities, giving rise to higher mobility spin-polarized currents or high ferromagnetism transition temperatures systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.
Resumo:
We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density approximation. The results are valid for a trapping potential that is slowly varying relative to a correlation length. They allow a direct experimental test of the transition from the weak-coupling Gross-Pitaevskii regime to the strong-coupling, fermionic Tonks-Girardeau regime. We also calculate the average two-particle correlation which characterizes the bulk properties of the sample, and find that it can be well approximated by the value of the local pair correlation in the trap center.
Resumo:
The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.
Resumo:
We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative modi. cation of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation, proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra computational effort. (C) 2008 Published by Elsevier B.V.
Resumo:
The electrical conductivity σ has been calculated for p-doped GaAs/Al0.3Ga0.7As and cubic GaN/Al0.3Ga0.7N thin superlattices (SLs). The calculations are done within a self-consistent approach to the k → ⋅ p → theory by means of a full six-band Luttinger-Kohn Hamiltonian, together with the Poisson equation in a plane wave representation, including exchange correlation effects within the local density approximation. It was also assumed that transport in the SL occurs through extended minibands states for each carrier, and the conductivity is calculated at zero temperature and in low-field ohmic limits by the quasi-chemical Boltzmann kinetic equation. It was shown that the particular minibands structure of the p-doped SLs leads to a plateau-like behavior in the conductivity as a function of the donor concentration and/or the Fermi level energy. In addition, it is shown that the Coulomb and exchange-correlation effects play an important role in these systems, since they determine the bending potential.