995 resultados para litter quality
Resumo:
Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.
Resumo:
Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.
Resumo:
Decomposition was studied in a reciprocal litter transplant experiment to examine the effects of forest type, litter quality and their interaction on leaf decomposition in four tropical forests in south-east Brazil. Litterbags were used to measure decomposition of leaves of one tree species from each forest type: Calophyllum brasiliense from restinga forest; Guapira opposita from Atlantic forest; Esenbeckia leiocarpa from semi-deciduous forest; and Copaifera langsdorffii from cerradao. Decomposition rates in rain forests (Atlantic and restinga) were twice as fast as those in seasonal forests (semi-deciduous and cerradao), suggesting that intensity and distribution of precipitation are important predictors of decomposition rates at regional scales. Decomposition rates varied by species, in the following order: E. leiocarpa > C. langsdorffii > G. opposita > C. brasiliense. However, there was no correlation between decomposition rates and chemical litter quality parameters: C:N, C:P, lignin concentration and lignin:N. The interaction between forest type and litter quality was positive mainly because C. langsdorffii decomposed faster than expected in its native forest. This is a potential indication of a decomposer`s adaptation to specific substrates in a tropical forest. These findings suggest that besides climate, interactions between decomposers and plants might play an essential role in decomposition processes and it must be better understood.
Resumo:
The problem of ‘wet litter’, which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality.
Resumo:
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas which correspond closely with the main drivers of global change can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.
Resumo:
Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
Resumo:
1. Litter decomposition recycles nutrients and causes large fluxes of carbon dioxide into the atmosphere. It is typically assumed that climate, litter quality and decomposer communities determine litter decay rates, yet few comparative studies have examined their relative contributions in tropical forests. 2. We used a short-term litterbag experiment to quantify the effects of litter quality, placement and mesofaunal exclusion on decomposition in 23 tropical forests in 14 countries. Annual precipitation varied among sites (760-5797 mm). At each site, two standard substrates (Raphia farinifera and Laurus nobilis) were decomposed in fine- and coarse-mesh litterbags both above and below ground for approximately 1 year. 3. Decomposition was rapid, with >95% mass loss within a year at most sites. Litter quality, placement and mesofaunal exclusion all independently affected decomposition, but the magnitude depended upon site. Both the average decomposition rate at each site and the ratio of above- to below-ground decay increased linearly with annual precipitation, explaining 60-65% of among-site variation. Excluding mesofauna had the largest impact on decomposition, reducing decomposition rates by half on average, but the magnitude of decrease was largely independent of climate. This suggests that the decomposer community might play an important role in explaining patterns of decomposition among sites. Which litter type decomposed fastest varied by site, but was not related to climate. 4. Synthesis. A key goal of ecology is to identify general patterns across ecological communities, as well as relevant site-specific details to understand local dynamics. Our pan-tropical study shows that certain aspects of decomposition, including average decomposition rates and the ratio of above- to below-ground decomposition are highly correlated with a simple climatic index: mean annual precipitation. However, we found no relationship between precipitation and effects of mesofaunal exclusion or litter type, suggesting that site-specific details may also be required to understand how these factors affect decomposition at local scales.
Resumo:
Vegetated riparian buffer strips have been established in Southern Quebec (Canada) in order to intercept nutrients such as nitrate (NO(3)(-)) and protect water quality near agricultural fields. Buffer strips may also favour denitrification through a combination of high soil moisture, NO(3)(-) and carbon supply, which could lead to the production of nitrous oxide (N(2)O), a greenhouse gas. Denitrification could be further amplified by the presence of earthworms, or by plant species that promote earthworm and bacterial activity in soils. Soils from four farms, comprising maize fields and adjacent buffer strips, were sampled in the fall of 2008. A total of six earthworm species were found, but average earthworm biomass did not differ between buffer strips and maize agroecoecosystems. Nitrate concentrations and net nitrification rates were higher in the maize fields than in the buffer strips: there was no difference in N(2)O production in soils collected from the two sampling locations. Potential denitrification, measured by acetylene inhibition, varied by two orders of magnitude, depending on experimental conditions: when amended with H(2)O or with H(2)O + NO3-, potential denitrification was higher (P < 0.05) in soils from buffer strips than from maize fields. Potential denitrification was highest in soils amended with H(2)O+glucose, or with H(2)O+ NO(3)(-) + glucose. Using microcosms, we tested the effect of litter-soil mixtures on earthworm growth, and the effect of earthworm-litter-soil mixtures on potential denitrification. Based on four categories of chemical assays, litters of woody species (oak, apple, Rhododendron) were generally of lower nutritional quality than litter from agronomic species (alfalfa, switchgrass, corn stover). Alfalfa litter had the most positive effect, whereas apple litter had the most negative effect, on earthworm growth. Potential denitrification was 2-4 times higher in earthworm-litter-soil mixtures than in plain soil. Litter treatments that included corn stover had lower potential denitrification than those that included alfalfa or switchgrass, whereas litter treatments that included oak had lower potential denitrification than those that included apple or Rhododendron. Results suggest that potential N(2)O emissions may be higher in riparian buffer strips than in adjacent maize fields, that N(2)O emissions in buffer strips may be amplified by comminuting earthworms, and that plant litters that reduce earthworm growth may not be best at mitigating N(2)O emissions. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the decomposition process of leaf litter from the main Brazilian mangrove species Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. Senescent leaves were collected, dried and placed in nylon bags with different mesh sizes (fine: 2x2mm and coarse: 8x8mm). The bags were distributed over the sediment, and replicates of each species and mesh size were collected periodically over 4months. In the laboratory, the dry weight of the samples was measured, and the decomposition coefficient (k) for each species and mesh size was obtained over time. All species showed a rapid decomposition rate at the beginning of the experiment, followed by a slower but steady rate of decomposition over time. The rate of leaf litter decomposition was highest in A. schaueriana, intermediate in L. racemosa and lowest in R. mangle. The difference was mainly linked to the activity and abundance of detritivores, together with the different litter quality of the species, which determined their palatability and probably influenced the decomposition process.
Resumo:
The PhD project was focused on the study of the poultry welfare conditions and improvements. The project work was divided into 3 main research activities. A) Field evaluation of chicken meat rearing conditions kept in intensive farms. Considering the lack of published reports concerning the overall Italian rearing conditions of broiler chickens, a survey was carried out to assess the welfare conditions of broiler reared in the most important poultry companies in Italy to verify if they are in accordance with the advices given in the European proposal COM (2005) 221 final. Chicken farm conditions, carcass lesions and meat quality were investigated. 1. The densities currently used in Italy are in accordance with the European proposal COM 221 final (2005) which suggests to keep broilers at a density lower than 30-32 kg live weight/m2 and to not exceed 38-40 kg live weight/m2. 2. The mortality rates in summer and winter agree with the mortality score calculated following the formula reported in the EU Proposal COM 221 final (2005). 3. The incidence of damaged carcasses was very low and did not seem related to the stocking density. 4. The FPD scores were generally above the maximum limit advised by the EU proposal COM 221 final (2005), although the stocking densities were lower than 30-32 kg live weight per m2. 5. It can be stated that the control of the environmental conditions, particularly litter quality, appears a key issue to control the onset of foot dermatitis. B) Manipulation of several farm parameters, such litter material and depth, stocking density and light regimen to improve the chicken welfare conditions, in winter season. 1. Even though 2 different stocking densities were established in this study, the performances achieved from the chickens were almost identical among groups. 2. The FCR was significantly better in Standard conditions contrarily to birds reared in Welfare conditions with lower stocking density, more litter material and with a light program of 16 hours light and 8 hours dark. 3. In our trial, in Standard groups we observed a higher content of moisture, nitrogen and ammonia released from the litter. Therefore it can be assumed that the environmental characteristics have been positively changed by the improvements of the rearing conditions adopted for Welfare groups. 4. In Welfare groups the exhausted litters of the pens were dryer and broilers showed a lower occurrence of FPD. 5. The prevalence of hock burn lesions, like FPD, is high with poor litter quality conditions. 6. The combined effect of a lower stocking density, a greater amount of litter material and a photoperiod similar to the natural one, have positively influenced the chickens welfare status, as a matter of fact the occurrence of FPD in Welfare groups was the lowest keeping the score under the European threshold of the proposal COM 221 final(2005). C) The purpose of the third research was to study the effect of high or low stocking density of broiler chickens, different types of litter and the adoption of short or long lighting regimen on broiler welfare through the evaluation of their productivity and incidence of foot pad dermatitis during the hot season. 1. The feed efficiency was better for the Low Density than for High Density broilers. 2. The appearance of FPD was not influenced by stocking density. 3. The foot examination revealed that the lesions occurred more in birds maintained on chopped wheat straw than on wood shaving. 4. In conclusion, the adoptions of a short light regimen similar to that occurring in nature during summer reduces the feed intake without modify the growth rate thus improving the feed efficiency. Foot pad lesion were not affected neither by stocking densities nor by light regimens whereas wood shavings exerted a favourable effect in preserving foot pad in good condition. D) A study was carried out to investigate more widely the possible role of 25-hydroxycholecalciferol supplemented in the diet of a laying hen commercial strain (Lohmann brown) in comparison of diets supplemented with D3 or with D3 + 25- hydroxycholecalciferol. Egg traits during a productive cycle as well as the bone characteristics of the layers have been as well evaluated to determine if there the vitamin D3 may enhance the welfare status of the birds. 1. The weight of the egg and of its components is often greater in hens fed a diet enriched with 25-hydroxycholecalciferol. 2. Since eggs of treated groups are heavier and a larger amount of shell is needed, a direct effect on shell strength is observed. 3. At 30 and at 50 wk of age hens fed 25 hydroxycholecalciferol exhibited greater values of bone breaking force. 4. Radiographic density values obtained in the trial are always higher in hens fed with 25-hydroxycholecalciferol of both treatments: supplemented for the whole laying cycle (25D3) or from 40 weeks of age onward (D3+25D3).
Resumo:
Background and aims Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors. Results Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24 ± 6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12 ± 4 %; p < 0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests. Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.
Resumo:
The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.
Resumo:
Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different temperatures. Within all soil moisture regimes, respiration rates always increased with increase in temperature. For a given temperature, soil respiration increased by half (on average) across moisture regimes; Q(10) values declined with soil moisture from 3.2 (at -0.03 MPa) to 2.1 (-1.5 MPa). In summary, soil respiration was generally directly related to temperature, but responses were ameliorated with decrease in soil moisture. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Landscape scale environmental gradients present variable spatial patterns and ecological processes caused by climate, topography and soil characteristics and, as such, offer candidate sites to study environmental change. Data are presented on the spatial pattern of dominant species, biomass, and carbon pools and the temporal pattern of fluxes across a transitional zone shifting from Great Basin Desert scrub, up through pinyon-juniper woodlands and into ponderosa pine forest and the ecotones between each vegetation type. The mean annual temperature (MAT) difference across the gradient is approximately 3 degrees C from bottom to top (MAT 8.5-5.5) and annual precipitation averages from 320 to 530 mm/yr, respectively. The stems of the dominant woody vegetation approach a random spatial pattern across the entire gradient, while the canopy cover shows a clustered pattern. The size of the clusters increases with elevation according to available soil moisture which in turn affects available nutrient resources. The total density of woody species declines with increasing soil moisture along the gl-adient, but total biomass increases. Belowground carbon and nutrient pools change from a heterogenous to a homogenous distribution on either side of the woodlands. Although temperature controls the: seasonal patterns of carbon efflux from the soils, soil moisture appears to be the primary driving variable, but response differs underneath the different dominant species, Similarly, decomposition of dominant litter occurs faster-at the cooler and more moist sites, but differs within sites due to litter quality of the different species. The spatial pattern of these communities provides information on the direction of future changes, The ecological processes that we documented are not statistically different in the ecotones as compared to the: adjoining communities, but are different at sites above the woodland than those below the woodland. We speculate that an increase in MAT will have a major impact on C pools and C sequestering and release processes in these semiarid landscapes. However, the impact will be primarily related to moisture availability rather than direct effects of an increase in temperature. (C) 1998 Elsevier Science B.V.
Resumo:
Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO2 and CH4). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH4 oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal peatland habitats. The results indicate that microbial community responses to WLD are complex but dependent on peatland type, litter quality, depth, and variable among microbes.