876 resultados para lithium carbonate


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30 min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2 mmol/l. However, after 1 h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15 mg/kg and 30 mg/kg lithium carbonate, respectively. MN arrays were applied 1 h after dosing and removed 1 h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5 % compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in out-patient settings. We will now focus on correlation of serum and MN lithium concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of varying the alkali metal cation in the high-temperature nucleophilic synthesis of a semi-crystalline, aromatic poly(ether ketone) have been systematically investigated, and striking variations in the sequence-distributions and thermal characteristics of the resulting polymers were found. Polycondensation of 4,4'-dihydroxybenzophenone with 1,3-bis(4-fluorobenzoyl)benzene in diphenylsulfone as solvent, in the presence of an alkali metal carbonate M2CO3 (M= Li, Na, K, or Rb) as base, affords a range of different polymers that vary in the distribution pattern of 2-ring and 3-ring monomer units along the chain. Lithium carbonate gives an essentially alternating and highly crystalline polymer, but the degree of sequence-randomisation increases progressively as the alkali metal series is descended, with rubidium carbonate giving a fully random and non-thermally-crystallisable polymer. Randomisation during polycondensation is shown to result from reversible cleavage of the ether linkages in the polymer by fluoride ions, and an isolated sample of alternating-sequence polymer is thus converted to a fully randomised material on heating with rubidium fluoride.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lithium (Li) is the first choice to treat bipolar disorder, a psychiatric illness characterized by mood oscillations between mania and depression. However, studies have demonstrated that this drug might influence mnemonic process due to its neuroprotector, antiapoptotic and neurogenic effects. The use of Li in the treatment of cognitive deficits caused by brain injury or neurodegenerative disorders have been widely studied, and this drug shows to be effective in preventing or even alleviating the memory impairment. The effects of Li on anxiety and depression are controversial and the relationship of the effects of lithium on memory, anxiety and depression remain unknown. In this context, this study aims to: evaluate the effects of acute and chronic administration of lithium carbonate in aversive memory and anxiety, simultaneously, using the plus maze discriminative avoidance task (PMDAT); test the antidepressant effect of the drug through the forced swimming test (FS) and analyze brainderived neurotrophic factor (BDNF) expression in structures related to memory and emotion. To evaluation of the acute effects, male Wistar rats were submitted to i.p. administration of lithium carbonate (50, 100 or 200 mg/kg) one hour before the training session (PMDAT) or lithium carbonate (50 or 100 mg/kg) one hour before the test session (FS). To evaluation of the chronic effects, the doses administered were 50 or 100 mg/kg or vehicle once a day for 21 days before the beginning of behavioral tasks (PMDAT and FS). Afterwards, the animals were euthanized and their brains removed and submitted to immunohistochemistry procedure to quantify BDNF. The animals that received acute treatment with 100 and 200 mg/kg of Li did not discriminated between the enclosed arms (aversive and non-aversive) in the training session of PMDAT, showing that these animal did not learned the task. This lack of discrimination was also observed in the test session, showing that the animals did not recall the aversive task. We also observed an increased exploration of the open arms of these same groups, indicating an anxiolytic effect. The same groups showed a reduction of locomotor activity, however, this effect does not seem to be related with the anxiolytic effect of the drug. Chronic treatment with Li did not promote alterations on learning or memory processes. Nevertheless, we observed a reduction of open arms exploration by animals treated with 50 mg/kg when compared to the other groups, showing an anxiogenic effect caused by this dose. This effect it is not related to locomotor alterations since there were no alterations in these parameters. Both acute and chronic treatment were ineffective in the FS. Chronic treatment with lithium was not able to modify BDNF expression in hippocampus, amygdala and pre-frontal cortex. These results suggest that acute administration of lithium promote impairments on learning in an aversive task, blocking the occurrence of memory consolidation and retrieval. The reduction of anxiety following acute treatment may have prevented the learning of the aversive task, as it has been found that optimum levels of anxiety are necessary for the occurrence of learning with emotional context. With continued, treatment the animals recover the ability to learn and recall the task. Indeed, they do not show differences in relation to control group, and the lack of alterations on BDNF expression corroborates this result. Possibly, the regimen of treatment used was not able to promote cognitive improvement. Li showed acute anxiolytic effect, however chronic administration 4 promoted the opposite effect. More studies are necessary to clarify the potential beneficial effect of Li on aversive memory

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a fibrous cellulose obtained from the sugar cane bagasse was analysed about its binder/disintegrating action and about its interference degree in the dissolution rate ('in vitro') of active principles, when incorporated in a compact system that has a water-soluble drug. It was used as reference drug the Lithium Carbonate, considering its solubility in water and it difficulties in the compressibility and flow rate. That cellulose was evaluated in a comparative study, involving another fibrous cellulose generally used in the tablet obtainment (Microcel 3E-200). After the experiment in methodologies of dry granulation and wet granulation, it was concluded that the analysed celluloses presents adequate binder/disintegrating efficience and they are equivalents in these aspect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lithium industry has changed and the producers of lithium carbonate form South America play a dominant role in the world. This paper discusses the South American geological resources, production and producers of lithium considering the potential growth in lithium consumption for electric vehicle batteries. Taking into account the manufacturing companies and their external connections, their participation in corporate groups and the international market for the stocks of metal, in addition to facts and updates that affect this market and its key growth trends. This inventory of the most important reserves takes into account the geological context of the formation of these deposits, including a description of the types of deposits exploited in the world today. Besides the general description was made a brief description of the South American resources, more exploited by the media (Salar de Atacama, Salar de Hombre Muerto, Salar de Uyuni) and Pegmatites of Província Pegmatítica Oriental do Brasil and Província Seridó-Borborema).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but has significant limitations in battery cycle life and safety. During initial charging, decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to the formation of a passivating layer on the anode known as the solid electrolyte interphase (SEI). The formation of an SEI has great impact on the cycle life and safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In this dissertation, two surface science model systems have been created under ultra-high vacuum (UHV) to probe the very initial stage of SEI formation at the model carbon anode surfaces of LIB. The first model system, Model System I, is an lithium-carbonate electrolyte/graphite C(0001) system. I have developed a temperature programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument as part of my dissertation to study Model System I in quantitative detail. The binding strengths and film growth mechanisms of key electrolyte molecules on model carbon anode surfaces with varying extents of lithiation were measured by TPD. TPRS was further used to track the gases evolved from different reduction products in the early-stage SEI formation. The branching ratio of multiple reaction pathways was quantified for the first time and determined to be 70.% organolithium products vs. 30% inorganic lithium product. The obtained branching ratio provides important information on the distribution of lithium salts that form at the very onset of SEI formation. One of the key reduction products formed from EC in early-stage SEI formation is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC structure in either the bulk or thin-film (SEI) form is unknown. To enable structural study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction measurements (bulk material) and STM measurements (deposited films). To enable studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate (LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution microaerosol deposition technique. Produced films were then imaged by ultra-high vacuum scanning tunneling microscopy (UHV-STM). As a control, the dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D phase behavior was mapped out as a function of coverage. The evolution of three distinct monolayer phases of DMF was observed with increasing surface pressure — a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF islands at lower surface pressures (DMF coverages), and was interpreted through nucleation theory. A structural model of the nucleation seed was proposed, and the implication of ionic SEI products, such as LEDC, in early-stage SEI formation was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer-clay nanocomposite (PCN) materials were prepared by intercalation of an alkyl-ammonium ion spacing/coupling agent and a polymer between the planar layers of a swellable-layered material, such as montmorillonite (MMT). The nanocomposite lithium polymer electrolytes comprising such PCN materials and/or a dielectric solution (propylene carbonate) were prepared and discussed. The chemical composition of the nanocomposite materials was determined with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which revealed that the alkyl-ammonium ion successfully intercalated the layer of MMT clay, and thus copolymer poly(vinylidene fluoride-hexafluoropropylene) entered the galleries of montmorillonite clay. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of the lithium polymer electrolyte. Equivalent circuits were proposed to fit the EIS data successfully, and the significant contribution from MMT was thus identified. The resulting polymer electrolytes show high ionic conductivity up to 10(-3) S cm(-1) after felling with propylene carbonate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of cokes pretreated at different temperatures are used as anodic materials and their electrochemical characteristics are examined by cyclic voltammetry. It is found that for some cokes such as petroleum coke (preheated at 1300 degrees C), pitch coke (1300 degrees C), needle coke (1900 degrees C), metallurgical coke (1900 degrees C), high capacity and cyclic efficiency are achieved. Needle coke (1900 degrees C) and metallurgical coke (1900 degrees C) in particular give a capacity of over 200 mAh/g and a cyclic efficiency of nearly 100%, whereas poor performance is exhibited by those pretreated at higher or lower temperatures, e.g., petroleum cokes (500 degrees C, 2800 degrees C), pitch coke (500 degrees C) and needle coke (2800 degrees C). The cyclic voltammograms show two electrochemical processes, one at about 0.1 V vs. Li+/Li which is electrochemically reversible, and may be attributed to the intercalation/deintercalation of lithium ions while the other, at about 0.6 V vs. Li+/Li, is electrochemically irreversible and may be assigned to the decomposition of the electrolyte solvent, which leads to formation of the passive film on the anode surface. The experimental results strongly suggest that the pretreatment temperature of cokes and of the solvent are determining factors for the growth, structure and properties of the passive film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cylindrical 'D'-size batteries were fabricated by polyaniline paste cathode and lithium foil anode sandwiched with microporous polypropylene separator. The electrolyte used was LiClO4 dissolved in a mixed solvent of propylene carbonate and dimethoxyethane. The results of charge/discharge curves, charge/discharge cycles, the short-circuit current, the open-circuit voltage storage and the change of discharge capacity with temperature, discharge current are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wound-type cell with a polyaniline (PAn) positive electrode, a LiClO4-propylene carbonate (PC) electrolyte, and a lithium foil negative electrode has been constructed. The two electrodes are separated by a polypropylene separator. The PAn is deposited on carbon felt from a HClO4 solution containing aniline by galvanostatic or potentiostatic electrolysis. Using cyclic voltammetry charge/discharge cycles and charge/retention tests, the following results have been obtained: (i) reversibility of the charge/discharge reaction of the PAn electrode is very good; (ii) more than 50 charge/discharge cycles at 80% charge/discharge efficiency and 260 W h kg-1 discharge energy density can be achieved at 50 mA between 2 and 4 V; (iii) the open-circuit voltage and the capacity retention of the battery after storage at open-circuit for 60 days are 3.4 V and 33%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous carbon aerogels are prepared by polycondensation of resorcinol (R) and formaldehyde (F)catalyzed by sodium carbonate (C) followed by carbonization of the resultant aerogels at 800? in an inert atmosphere. The porous texture of the carbons has been adjusted by the change of the molar ratio of resorcinol to catalyst (R/C) in the gel precursors in the range of 100 to 500. The porous structure of the aerogels and carbon aerogels are characterized by N2 adsorption-desorption measurements at 77 K. It is found that total pore volume and average pore diameter of the carbons increase with increase in the R/C ratio of the gel precursors.The prepared carbon aerogels are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested by using them as cathodes in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that with an increase of R/C ratio, the specific capacity of the Li/O2 cell fabricated from the carbon aerogels increases from 716 to 2077 charge/discharge cycles indicate that the carbon samples possess excellent stability on cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.