996 resultados para leverage effect
Resumo:
We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated random diffusion models that may have practical implications for many aspects of financial markets.
Resumo:
We consider two new approaches to nonparametric estimation of the leverage effect. The first approach uses stock prices alone. The second approach uses the data on stock prices as well as a certain volatility instrument, such as the CBOE volatility index (VIX) or the Black-Scholes implied volatility. The theoretical justification for the instrument-based estimator relies on a certain invariance property, which can be exploited when high frequency data is available. The price-only estimator is more robust since it is valid under weaker assumptions. However, in the presence of a valid volatility instrument, the price-only estimator is inefficient as the instrument-based estimator has a faster rate of convergence. We consider two empirical applications, in which we study the relationship between the leverage effect and the debt-to-equity ratio, credit risk, and illiquidity.
Resumo:
This study seeks to explain the leverage in UK stock returns by reference to the return volatility, leverage and size characteristics of UK companies. A leverage effect is found that is stronger for smaller companies and has greater explanatory power over the returns of smaller companies. The properties of a theoretical model that predicts that companies with higher leverage ratios will experience greater leverage effects are explored. On examining leverage ratio data, it is found that there is a propensity for smaller companies to have higher leverage ratios. The transmission of volatility shocks between the companies is also examined and it is found that the volatility of larger firm returns is important in determining both the volatility and returns of smaller firms, but not the reverse. Moreover, it is found that where volatility spillovers are important, they improve out-of-sample volatility forecasts. © 2005 Taylor & Francis Group Ltd.
Resumo:
In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
Mestrado em Controlo de Gestão e dos Negócios
Resumo:
One of the main implications of the efficient market hypothesis (EMH) is that expected future returns on financial assets are not predictable if investors are risk neutral. In this paper we argue that financial time series offer more information than that this hypothesis seems to supply. In particular we postulate that runs of very large returns can be predictable for small time periods. In order to prove this we propose a TAR(3,1)-GARCH(1,1) model that is able to describe two different types of extreme events: a first type generated by large uncertainty regimes where runs of extremes are not predictable and a second type where extremes come from isolated dread/joy events. This model is new in the literature in nonlinear processes. Its novelty resides on two features of the model that make it different from previous TAR methodologies. The regimes are motivated by the occurrence of extreme values and the threshold variable is defined by the shock affecting the process in the preceding period. In this way this model is able to uncover dependence and clustering of extremes in high as well as in low volatility periods. This model is tested with data from General Motors stocks prices corresponding to two crises that had a substantial impact in financial markets worldwide; the Black Monday of October 1987 and September 11th, 2001. By analyzing the periods around these crises we find evidence of statistical significance of our model and thereby of predictability of extremes for September 11th but not for Black Monday. These findings support the hypotheses of a big negative event producing runs of negative returns in the first case, and of the burst of a worldwide stock market bubble in the second example. JEL classification: C12; C15; C22; C51 Keywords and Phrases: asymmetries, crises, extreme values, hypothesis testing, leverage effect, nonlinearities, threshold models
Resumo:
Introduction In my thesis I argue that economic policy is all about economics and politics. Consequently, analysing and understanding economic policy ideally has at least two parts. The economics part, which is centered around the expected impact of a specific policy on the real economy both in terms of efficiency and equity. The insights of this part point into which direction the fine-tuning of economic policies should go. However, fine-tuning of economic policies will be most likely subject to political constraints. That is why, in the politics part, a much better understanding can be gained by taking into account how the incentives of politicians and special interest groups as well as the role played by different institutional features affect the formation of economic policies. The first part and chapter of my thesis concentrates on the efficiency-related impact of economic policies: how does corporate income taxation in general, and corporate income tax progressivity in specific, affect the creation of new firms? Reduced progressivity and flat-rate taxes are in vogue. By 2009, 22 countries are operating flat-rate income tax systems, as do 7 US states and 14 Swiss cantons (for corporate income only). Tax reform proposals in the spirit of the "flat tax" model typically aim to reduce three parameters: the average tax burden, the progressivity of the tax schedule, and the complexity of the tax code. In joint work, Marius Brülhart and I explore the implications of changes in these three parameters on entrepreneurial activity, measured by counts of firm births in a panel of Swiss municipalities. Our results show that lower average tax rates and reduced complexity of the tax code promote firm births. Controlling for these effects, reduced progressivity inhibits firm births. Our reading of these results is that tax progressivity has an insurance effect that facilitates entrepreneurial risk taking. The positive effects of lower tax levels and reduced complexity are estimated to be significantly stronger than the negative effect of reduced progressivity. To the extent that firm births reflect desirable entrepreneurial dynamism, it is not the flattening of tax schedules that is key to successful tax reforms, but the lowering of average tax burdens and the simplification of tax codes. Flatness per se is of secondary importance and even appears to be detrimental to firm births. The second part of my thesis, which corresponds to the second and third chapter, concentrates on how economic policies are formed. By the nature of the analysis, these two chapters draw on a broader literature than the first chapter. Both economists and political scientists have done extensive research on how economic policies are formed. Thereby, researchers in both disciplines have recognised the importance of special interest groups trying to influence policy-making through various channels. In general, economists base their analysis on a formal and microeconomically founded approach, while abstracting from institutional details. In contrast, political scientists' frameworks are generally richer in terms of institutional features but lack the theoretical rigour of economists' approaches. I start from the economist's point of view. However, I try to borrow as much as possible from the findings of political science to gain a better understanding of how economic policies are formed in reality. In the second chapter, I take a theoretical approach and focus on the institutional policy framework to explore how interactions between different political institutions affect the outcome of trade policy in presence of special interest groups' lobbying. Standard political economy theory treats the government as a single institutional actor which sets tariffs by trading off social welfare against contributions from special interest groups seeking industry-specific protection from imports. However, these models lack important (institutional) features of reality. That is why, in my model, I split up the government into a legislative and executive branch which can both be lobbied by special interest groups. Furthermore, the legislative has the option to delegate its trade policy authority to the executive. I allow the executive to compensate the legislative in exchange for delegation. Despite ample anecdotal evidence, bargaining over delegation of trade policy authority has not yet been formally modelled in the literature. I show that delegation has an impact on policy formation in that it leads to lower equilibrium tariffs compared to a standard model without delegation. I also show that delegation will only take place if the lobby is not strong enough to prevent it. Furthermore, the option to delegate increases the bargaining power of the legislative at the expense of the lobbies. Therefore, the findings of this model can shed a light on why the U.S. Congress often practices delegation to the executive. In the final chapter of my thesis, my coauthor, Antonio Fidalgo, and I take a narrower approach and focus on the individual politician level of policy-making to explore how connections to private firms and networks within parliament affect individual politicians' decision-making. Theories in the spirit of the model of the second chapter show how campaign contributions from lobbies to politicians can influence economic policies. There exists an abundant empirical literature that analyses ties between firms and politicians based on campaign contributions. However, the evidence on the impact of campaign contributions is mixed, at best. In our paper, we analyse an alternative channel of influence in the shape of personal connections between politicians and firms through board membership. We identify a direct effect of board membership on individual politicians' voting behaviour and an indirect leverage effect when politicians with board connections influence non-connected peers. We assess the importance of these two effects using a vote in the Swiss parliament on a government bailout of the national airline, Swissair, in 2001, which serves as a natural experiment. We find that both the direct effect of connections to firms and the indirect leverage effect had a strong and positive impact on the probability that a politician supported the government bailout.
Resumo:
Executive Summary The first essay of this dissertation investigates whether greater exchange rate uncertainty (i.e., variation over time in the exchange rate) fosters or depresses the foreign investment of multinational firms. In addition to the direct capital financing it supplies, foreign investment can be a source of valuable technology and know-how, which can have substantial positive effects on a host country's economic growth. Thus, it is critically important for policy makers and central bankers, among others, to understand how multinationals base their investment decisions on the characteristics of foreign exchange markets. In this essay, I first develop a theoretical framework to improve our knowledge regarding how the aggregate level of foreign investment responds to exchange rate uncertainty when an economy consists of many firms, each of which is making decisions. The analysis predicts a U-shaped effect of exchange rate uncertainty on the total level of foreign investment of the economy. That is, the effect is negative for low levels of uncertainty and positive for higher levels of uncertainty. This pattern emerges because the relationship between exchange rate volatility and 'the probability of investment is negative for firms with low productivity at home (i.e., firms that find it profitable to invest abroad) and the relationship is positive for firms with high productivity at home (i.e., firms that prefer exporting their product). This finding stands in sharp contrast to predictions in the existing literature that consider a single firm's decision to invest in a unique project. The main contribution of this research is to show that the aggregation over many firms produces a U-shaped pattern between exchange rate uncertainty and the probability of investment. Using data from industrialized countries for the period of 1982-2002, this essay offers a comprehensive empirical analysis that provides evidence in support of the theoretical prediction. In the second essay, I aim to explain the time variation in sovereign credit risk, which captures the risk that a government may be unable to repay its debt. The importance of correctly evaluating such a risk is illustrated by the central role of sovereign debt in previous international lending crises. In addition, sovereign debt is the largest asset class in emerging markets. In this essay, I provide a pricing formula for the evaluation of sovereign credit risk in which the decision to default on sovereign debt is made by the government. The pricing formula explains the variation across time in daily credit spreads - a widely used measure of credit risk - to a degree not offered by existing theoretical and empirical models. I use information on a country's stock market to compute the prevailing sovereign credit spread in that country. The pricing formula explains a substantial fraction of the time variation in daily credit spread changes for Brazil, Mexico, Peru, and Russia for the 1998-2008 period, particularly during the recent subprime crisis. I also show that when a government incentive to default is allowed to depend on current economic conditions, one can best explain the level of credit spreads, especially during the recent period of financial distress. In the third essay, I show that the risk of sovereign default abroad can produce adverse consequences for the U.S. equity market through a decrease in returns and an increase in volatility. The risk of sovereign default, which is no longer limited to emerging economies, has recently become a major concern for financial markets. While sovereign debt plays an increasing role in today's financial environment, the effects of sovereign credit risk on the U.S. financial markets have been largely ignored in the literature. In this essay, I develop a theoretical framework that explores how the risk of sovereign default abroad helps explain the level and the volatility of U.S. equity returns. The intuition for this effect is that negative economic shocks deteriorate the fiscal situation of foreign governments, thereby increasing the risk of a sovereign default that would trigger a local contraction in economic growth. The increased risk of an economic slowdown abroad amplifies the direct effect of these shocks on the level and the volatility of equity returns in the U.S. through two channels. The first channel involves a decrease in the future earnings of U.S. exporters resulting from unfavorable adjustments to the exchange rate. The second channel involves investors' incentives to rebalance their portfolios toward safer assets, which depresses U.S. equity prices. An empirical estimation of the model with monthly data for the 1994-2008 period provides evidence that the risk of sovereign default abroad generates a strong leverage effect during economic downturns, which helps to substantially explain the level and the volatility of U.S. equity returns.
Resumo:
One of the main developments in the global economy during the past decades has been the growth of emerging economies. Projections for their long-term growth, changes in the investment climate, corporate transparency and demography point to an increasing role for these emerging economies in the global economy. Today, emerging economies are usually considered as financial markets offering opportunities for high returns, good risk diversification and improved return-to-risk ratios. However, researchers have noted that these advantages may be in decline because of the increasing market integration. Nevertheless, it is likely that certain financial markets and specific sectors will remain partially segmented and somewhat insulated from the global economy for the year to come. This doctoral dissertation investigates several stock markets in Emerging Eastern Europe (EEE), including the ones in Russia, Poland, Hungary, the Czech Republic, Bulgaria and Slovenia. The objective is to analyze the returns and financial risks in these emerging markets from international investor’s point of view. This study also examines the segmentation/integration of these financial markets and the possibilities to diversify and hedge financial risk. The dissertation is divided into two parts. The first includes a review of the theoretical background for the articles and a review of the literature on EEE stock markets. It includes an overview of the methodology and research design applied in the analysis and a summary of articles from the second part of this dissertation and their main findings. The second part consists of four research publications. This work contributes to studies on emerging stock markets in four ways. First, it adds to the body of research on the pricing of risk, providing new empirical evidence about partial stock market segmentation in EEE. The results suggest that the aggregate emerging market risk is a relevant driver for stock market returns and that this market risk can be used to price financial instruments and forecast their performance. Second, it contributes to the empirical research on the integration of stock markets, asset prices and exchange rates by identifying the relationships between these markets through volatility and asset pricing. The results show that certain sectors of stock markets in EEE are not as integrated as others. For example, the Polish consumer goods sector, the Hungarian telecommunications sector, and the Czech financial sector are somewhat isolated from their counterparts elsewhere in Europe. Nevertheless, an analysis of the impact of EU accession in 2004 on stock markets suggests that most of the EEE markets are becoming increasingly integrated with the global markets. Third, this thesis complements the scientific literature in the field of shock and volatility spillovers by examining the mechanism of spillover distribution among the EU and EEE countries. The results illustrate that spillovers in emerging markets are mostly from a foreign exchange to the stock markets. Moreover, the results show that the effects of external shocks on stock markets have increased after the enlargement of the EU in 2004. Finally, this study is unique because it analyzes the effects of foreign macroeconomic news on geographically closely related countries. The results suggest that the effects of macroeconomic announcements on volatility are significant and have effect that varies across markets and their sectors. Moreover, the results show that the foreign macroeconomic news releases, somewhat surprisingly, have a greater effect on the EEE markets than the local macroeconomic news. This dissertation has a number of implications for the industry and for practitioners. It analyses financial risk associated with investing in Emerging Eastern Europe. Investors may use this information to construct and optimize investment portfolios. Moreover, this dissertation provides insights for investors and portfolio managers considering asset allocation to protect value or obtain higher returns. The results have also implications for asset pricing and portfolio selection in light of macroeconomic news releases.
Resumo:
In this paper, we provide both qualitative and quantitative measures of the cost of measuring the integrated volatility by the realized volatility when the frequency of observation is fixed. We start by characterizing for a general diffusion the difference between the realized and the integrated volatilities for a given frequency of observations. Then, we compute the mean and variance of this noise and the correlation between the noise and the integrated volatility in the Eigenfunction Stochastic Volatility model of Meddahi (2001a). This model has, as special examples, log-normal, affine, and GARCH diffusion models. Using some previous empirical works, we show that the standard deviation of the noise is not negligible with respect to the mean and the standard deviation of the integrated volatility, even if one considers returns at five minutes. We also propose a simple approach to capture the information about the integrated volatility contained in the returns through the leverage effect.
Resumo:
This paper develops a general stochastic framework and an equilibrium asset pricing model that make clear how attitudes towards intertemporal substitution and risk matter for option pricing. In particular, we show under which statistical conditions option pricing formulas are not preference-free, in other words, when preferences are not hidden in the stock and bond prices as they are in the standard Black and Scholes (BS) or Hull and White (HW) pricing formulas. The dependence of option prices on preference parameters comes from several instantaneous causality effects such as the so-called leverage effect. We also emphasize that the most standard asset pricing models (CAPM for the stock and BS or HW preference-free option pricing) are valid under the same stochastic setting (typically the absence of leverage effect), regardless of preference parameter values. Even though we propose a general non-preference-free option pricing formula, we always keep in mind that the BS formula is dominant both as a theoretical reference model and as a tool for practitioners. Another contribution of the paper is to characterize why the BS formula is such a benchmark. We show that, as soon as we are ready to accept a basic property of option prices, namely their homogeneity of degree one with respect to the pair formed by the underlying stock price and the strike price, the necessary statistical hypotheses for homogeneity provide BS-shaped option prices in equilibrium. This BS-shaped option-pricing formula allows us to derive interesting characterizations of the volatility smile, that is, the pattern of BS implicit volatilities as a function of the option moneyness. First, the asymmetry of the smile is shown to be equivalent to a particular form of asymmetry of the equivalent martingale measure. Second, this asymmetry appears precisely when there is either a premium on an instantaneous interest rate risk or on a generalized leverage effect or both, in other words, whenever the option pricing formula is not preference-free. Therefore, the main conclusion of our analysis for practitioners should be that an asymmetric smile is indicative of the relevance of preference parameters to price options.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.
Resumo:
This paper derives the ARMA representation of integrated and realized variances when the spot variance depends linearly on two autoregressive factors, i.e., SR SARV(2) models. This class of processes includes affine, GARCH diffusion, CEV models, as well as the eigenfunction stochastic volatility and the positive Ornstein-Uhlenbeck models. We also study the leverage effect case, the relationship between weak GARCH representation of returns and the ARMA representation of realized variances. Finally, various empirical implications of these ARMA representations are considered. We find that it is possible that some parameters of the ARMA representation are negative. Hence, the positiveness of the expected values of integrated or realized variances is not guaranteed. We also find that for some frequencies of observations, the continuous time model parameters may be weakly or not identified through the ARMA representation of realized variances.