48 resultados para leishmanicidal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are essential for the innate immune system of eukaryotes, imparting protection against pathogens and their proliferation in host organisms. The recent interest in AMPs as active materials in bionanostructures is due to the properties shown by these biological molecules, such as the presence of an alpha-helix structure and distribution of positive charges along the chain. In this study the antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines. The leishmanicidal activity of DS 01 was confirmed using kinetic essays, in which DS 01 promoted death of all metacyclic promastigote cells in 45 minutes. Surprisingly, the immobilized DS 01 molecules displayed electroactivity, as revealed by electrochemical experiments, in which an oxidation peak at about 0.61 V was observed for a DS 01 monolayer deposited on top of a conductive electrode. Such electroactivity was used to investigate the sensing abilities of the nanostructured films toward Leishmania. We observed an increase in the oxidation current as a function of number of Leishmania cells in the electrolytic solution at concentrations down to 10(3) cells/mL. The latter is indicative that the use of AMPs immobilized in electroactive nanostructured films may be of interest for applications in the pharmaceutical industry and diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) has long been known to protect experimental animals from the injury associated with oxidative and inflammatory conditions. In the latter case, a parallel decrease in tissue protein nitration levels has been observed. Protein nitration represents a shift in nitric oxide actions from physiological to pathophysiological and potentially damaging pathways involving its derived oxidants such as nitrogen dioxide and peroxynitrite. In infectious diseases, protein tyrosine nitration of tissues and cells has been taken as evidence for the involvement of nitric oxide-derived oxidants in microbicidal mechanisms. To examine whether tempol inhibits the microbicidal action of macrophages, we investigated its effects on Leishmania amazonensis infection in vitro (RAW 264.7 murine macrophages) and in vivo (C57B1/6 mice). Tempol was administered in the drinking water at 2 mM throughout the experiments and shown to reach infected footpads as the nitroxide plus the hydroxylamine derivative by EPR analysis. At the time of maximum infection (6 weeks), tempol increased footpad lesion size (120%) and parasite burden (150%). In lesion extracts, tempol decreased overall nitric oxide products and expression of inducible nitric oxide synthase to about 80% of the levels in control animals. Nitric oxide-derived products produced by radical mechanisms, such as 3-nitrotyrosine and nitrosothiol, decreased to about 40% of the levels in control mice. The results indicate that tempol worsened L. amazonensis infection by a dual mechanism involving down-regulation of iNOS expression and scavenging of nitric oxide-derived oxidants. Thus, the development of therapeutic strategies based on nitroxides should take into account the potential risk of altering host resistance to parasite infection. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Visceral leishmaniasis (VL) is caused by the intracellular protozoan Leishmania donovani complex. VL may be asymptomatic or progressive and is characterized by fever, anemia, weight loss and the enlargement of the spleen and liver. The nutritional status of the patients with VL is a major determinant of the progression, severity and mortality of the disease, as it affects the clinical progression of the disease. Changes in lipoproteins and plasma proteins may have major impacts in the host during infection. Thus, our goal was evaluate the serum total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, glucose, albumin, globulin and total protein levels, as well as the body composition, of VL patients before and after treatment. Methods Nutritional evaluation was performed using the bioelectrical impedance analysis (BIA) to assess body composition. Biochemical data on the serum total cholesterol, HDL, LDL, triglycerides, glucose, albumin, globulin and total protein were collected from the medical charts of the patients. Results BIA indicated that both pre-treatment and post-treatment patients exhibited decreased phase angles compared to the controls, which is indicative of disease. Prior to treatment, the patients exhibited lower levels of total body water compared to the controls. Regarding the biochemical evaluation, patients with active VL exhibited lower levels of total cholesterol, HDL, LDL and albumin and higher triglyceride levels compared to patients after treatment and the controls. Treatment increased the levels of albumin and lipoproteins and decreased the triglyceride levels. Conclusions Our results suggest that patients with active VL present biochemical and nutritional changes that are reversed by treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infections by protozoans of the genus Leishmania are the major worldwide health problem, with high endemicity in developing countries. The drugs of choice for the treatment of leishmaniasis are the pentavalent antimonials, which exert renal and cardiac toxicity. Thus, there is a strong need for safer and more effective treatments against leishmaniasis. The present study was designated to evaluate, by a bioguided assay, the leishmanicidal activity of hidro-ethanolic extracts from different parts (leves, caule and root) of one same plant the Arrabidaea brachypoda (DC.) Bureau. Its has been used to relieve general pain, painful joints and kidney stones in Brazilian folk medicine. Nevertheless, scientific information regarding this species is scarce; there are no reports related to its possible leishmanicidal activity. The leves extract presented the best activity on promastigotes forms of Leishmania (L.) amazonensis, when compared to the other extracts. It showed significant activity on Leishmania (L.) amazonensis. Our results are promising, showing that these compounds are biologically active on Leishmania (L.) amazonensis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos anos, o Ministério da Saúde do Brasil e a Organização Mundial da Saúde tem apoiado a investigação de novas tecnologias que possam contribuir para a vigilância, novos tratamentos e controle da leishmaniose visceral no país. Assim, o objetivo deste trabalho foi isolar compostos de plantas do bioma Caatinga, e investigar a toxicidade destes compostos contra as formas promastigotas e amastigotas de Leishmania infantum chagasi, principal parasita responsável pela leishmaniose visceral na América do Sul, e avaliar a sua capacidade para inibir a enzima acetil-colinesterase (AChE). Após a exposição aos compostos em estudo, foram realizados testes utilizando a forma promastigota que expressa luciferase e ELISA in situ para medir a viabilidade das formas promastigotas e amastigota, respectivamente. O ensaio colorimétrico MTT foi realizado para determinar a toxicidade destas substâncias utilizando células monocíticas murina RAW 264.7. Todos os compostos foram testados in vitro para as sua propriedade anti-colinesterásica. Um cumarina, escoparona, foi isolada a partir de hastes de Platymiscium floribundum, e os flavonóides, rutina e quercetina, foram isolados a partir de grãos de Dimorphandra gardneriana. Estes compostos foram purificados, utilizando cromatografia em coluna gel eluída com solventes orgânicos em misturas de polaridade crescente, e identificados por análise espectral. Nos ensaios leishmanicidas, os compostos fenólicos mostraram eficácia contra as formas extracelulares promastigotas, com EC50 para escoporona de 21.4µg/mL e para quercetina e rutina 26 e 30.3µg/mL, respectivamente. Os flavonóides apresentaram resultados comparáveis à droga controle, a anfotericina B, contra as formas amastigotas com EC50 para quercetina e rutina de 10.6 e 43.3µg/mL, respectivamente. Os compostos inibiram a enzima AChE com halos de inibição variando de 0,8 a 0,6cm, indicando um possível mecanismo de ação para a atividade leishmanicida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leishmaniasis and Chagas disease are parasitic protozoan infections that affect the poorest population in the world, causing high mortality and morbidity. As a result of highly toxic and long-duration treatments, novel, safe and more efficacious drugs are essential. In this work, the methanol (MeOH) extract from the leaves of Piper malacophyllum (Piperaceae) was fractioned to afford one alkenylphenol, which was characterized as 4-[(3'E)-decenyl]phenol (gibbilimbol B) by spectroscopic methods. Anti-protozoan in vitro assays demonstrated for the first time that Leishmania (L.) infantum chagasi was susceptible to gibbilimbol B. with an in vitro EC50 of 23 mu g/mL against axenic promastigotes and an EC50 of 22 mu g/mL against intracellular amastigotes. Gibbilimbol B was also tested for anti-trypanosomal activity (Trypanosoma cruzi) and showed an EC50 value of 17 mu g/mL against trypomastigotes. To evaluate the cytotoxic parameters, this alkenylphenol was tested in vitro against NCTC cells, showing a CC50 of 59 mu g/mL and absent hemolytic activity at the highest concentration of 75 mu g/mL. Using the fluorescent probe SYTOX Green suggested that the alkenylphenol disrupted the Leishmania plasma membrane upon initial incubation. Further drug design studies aiming at derivatives could be a promising tool for the development of new therapeutic agents for leishmaniasis and Chagas disease. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC50 values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 mu M, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate L-arginine and the cofactor Mn2+ at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn-A(2+) and Mn-B(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) is a zoonotic disease characterized by infection of mononuclear phagocytes by Leishmania chagasi. The primary vector is Lutzomyia longipalpis and the dog is the main domestic reservoir. The control and current treatment of dogs using synthetic drugs have not shown effectiveness in reducing the incidence of disease in man. In attempt to find new compounds with leishmanicidal action, plant secondary metabolites have been studied in search of treatments of VL. This study aimed to evaluate the leishmanicidal activity of Musa paradisiaca (banana tree) and Spondias mombin (cajazeira) chemical constituents on promastigotes and amastigotes of L. chagasi. Phytochemical analysis by column chromatography was performed on ethanol extracts of two plants and fractions were isolated. Thin layer chromatography was used to compare the fractions and for isolation the substances to be used in vitro tests. The in vitro tests on promastigotes of L chagasi used the MTT colorimetric method and the method of ELISA in situ was used against amastigotes besides the cytotoxicity in RAW 264.7 cells. Of the eight fractions tested, Sm1 and Sm2 from S. mombin had no action against promastigotes, but had good activity against amastigotes. The fractions Mp1 e Mp4 of M. paradisiaca were very cytotoxic to RAW 264.7 cells. The best result was obtained with the fraction Sm3 from S. mombin with IC50 of 11.26 mu g/ml against promastigotes and amastigotes of 0.27 mu g/ml. The fraction Sm3 characterized as tannic acid showed the best results against both forms of Leishmania being a good candidate for evaluation in in vivo tests. (C) 2012 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro evaluation of alkaloidal fractions of twigs, barks and leaves from two Unonopsis species, Unonopsis guatterioides R.E. Fr. and Unonopsis duckei R.E. Fr., Annonaceae, against promastigote forms of Leishmania amazonensis revealed these species as sources of substances with promising leishmanicidal potential. All alkaloidal fractions from twigs, barks and leaves of U. guatterioides were classified as highly active, with IC50 1.07, 1.90, and 2.79 mg/mL, respectively. Only the alkaloidal fraction from the twigs of U. duckei was classified as inactive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages.