962 resultados para laser tuning
Resumo:
DFB lasers with continuously and arbitrarily chirped gratings of ultrahigh spatial precision are implemented by a method we proposed recently, using bent waveguides on homogeneous grating fields. Choosing individual bending functions we generate special chirping functions and obtain additional degrees of freedom to tailor and improve specific device performances, We present two applications for lasers showing several improved device properties and the effectiveness of our method, First, we implement continuously distributed phase-shifted lasers, revealing a considerably reduced photon pile-up, higher single-longitudinal mode stability, higher output power, lower linewidth, and higher yield than conventional abruptly phase-shifted lasers, Second, a novel tuning principle is applied in chirped multiple-section DFB lasers, showing 5.5-nm wavelength tuning, without any gaps, maintaining high side-mode suppression.
Resumo:
本文报导了采用半导体激光器泵浦的高效连续可调谐Yb:LYSO激光器的输出特性。LYSO晶体同时具有LSO晶体良好的激光性能和YSO晶体易于生长且成本低廉的优点,实验中我们采用5at%掺杂的Yb:LYSO晶体进行研究,获得了最大输出功率2.84W、输出波长1085nm、光-光转换效率54.5%的高效输出。并且得到了1030-1111nm,一共81nm的波长调谐范围,这是目前我们所知道的从Yb:LYSO激光器获得的最宽的调谐输出。
Resumo:
Cr~(2+):ZnSe具有很宽的吸收带和发射带,是中红外波段优秀的可调谐激光材料。从吸收光谱、发射光谱以及角度调谐输出对Cr~(2+):ZnSe晶体的激光输出性能进行了研究。采用真空高温扩散法制备Cr~(2+):ZnSe晶体.获得了高浓度的Cr~(2+)离子掺杂的厚1.7 mm,直径10 mm的薄片ZnSe晶体。使用中心波长2.05μm,最大输出功率8 W的Tm离子掺杂的光纤激光器抽运,使用平凹腔结构搭建谐振腔,获得了最大平均功率1.034 W,中心波长2.367μm,线宽10 nm的连续激光输出。利用角度调谐的方法,对Cr:ZnSe晶体的调谐性能进行了研究,在100 nm范围内获得了调谐输出。
Resumo:
利用激光二极管(LD)抽运新型Na.Yb共掺CaF2(Na.Yb:CaF2)晶体,获得了1.05μm的自调Q激光输出。利用透射率1%的耦合输出镜,得到最低激光输出的抽运阈值功率仅为70mW。在透射率为2%的输出镜条件下,得到最大输出激光功率为390mw,此时激光的斜度效率达到20%。实验详细记录了自调Q脉冲的周期和宽度随抽运功率的变化关系,随着抽运功率的增加,自调Q脉冲的周期和宽度呈指数衰减。同时,还采用单棱镜进行光谱调谐实验,获得了1036~1059nm的自调Q激光调谐输出。
Resumo:
In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.
Resumo:
We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.
Resumo:
A control algorithm is presented that addresses the stability issues inherent to the operation of monolithic mode-locked laser diodes. It enables a continuous pulse duration tuning without any onset of Q-switching instabilities. A demonstration of the algorithm performance is presented for two radically different laser diode geometries and continuous pulse duration tuning between 0.5 ps to 2.2 ps and 1.2 ps to 10.2 ps is achieved. With practical applications in mind, this algorithm also facilitates control over performance parameters such as output power and wavelength during pulse duration tuning. The developed algorithm enables the user to harness the operational flexibility from such a laser with 'push-button' simplicity.
Resumo:
A 40-GHz wavelength tunable mode-locked fiber ring laser based oil cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.
Resumo:
The two-section tunable ridge waveguide distributed Bragg reflector (DBR) laser fabricated by the selective intermixing of an InGaAsP-InGaAsP quantum well structure is presented. The threshold current of the laser is 51mA. The tunable range of the laser is 4.6nm, and the side mode suppression ratio (SMSR) is 40dB.
Resumo:
We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.
Resumo:
Record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser is demonstrated. A maximum output power of 455mW and a side-mode suppression ratio >45dB in the central part of the tuning range are achieved. ©2010 IEEE.
Resumo:
A compact all-room-temperature CW 73-nm tunable laser source in the visible spectral region (574nm-647nm) has been demonstrated by frequency-doubling of a broadly-tunable InAs/GaAs quantum dot external-cavity diode laser in periodically-poled potassium titanyl phosphate waveguides with a maximum output power in excess of 12mW and a maximum conversion efficiency exceeding 10%. Three waveguides with different cross-sectional areas (4×4μm2, 3×5μm2 and 2x6μm2) were investigated. Introduction - Development of compact broadly tunable laser sources in the visible spectral region is currently very attractive area of research with applications ranging from photomedicine and biophotonics to confocal fluorescence microscopy and laser projection displays. In this respect, semiconductor lasers with their small size, high efficiency, reliability and low cost are very promising for realization of such sources by frequencydoubling of the infrared light in nonlinear crystal waveguides. Furthermore, the wide tunability offered by quantum-dot (QD) external-cavity diode lasers (ECDL), due to the temperature insensibility and broad gain bandwidth [1,2], is very promising for the development of tunable visible laser sources [3,4]. In this work we show a compact green-to-red tunable allroom-temperature CW laser source using a frequency-doubled InAs/GaAs QD-ECDL in periodically-poled potassium titanyl phosphate (PPKTP) crystal waveguides. This laser source generates frequency-doubled light over the 574nm-647nm wavelength range utilizing the significant difference in the effective refractive indices of high-order and low-order modes in multimode waveguides [3]. Experimental results - Experimental setup used in this work was similar to that described in [3] and consisted of a QD gain chip in the quasiLittrow configuration and a PPKTP waveguide. Coarse wavelength tuning of the QD-ECDL between 1140 nm and 1300 nm at 20°C was possible for pump current of 1.5 A. The laser output was coupled into the PPKTP waveguide using an AR-coated 40x aspheric lens (NA ~ 0.55). The PPKTP frequency-doubling crystal (not AR coated) used in our work was 18 mm in length and was periodically poled for SHG (with the poling period of ~ 11.574 11m). The crystal contained 3 different waveguides with cross-sectional areas of ~ 4x4 11m2, 3x5 11m2 and 2x6 11m2. Both the pump laser and the PPKTP crystal were operating at room temperature. The waveguides with cross-sectional areas of 4x411m2, 3x511m2 and 2x611m2 demonstrated the tunability in the wavelength ranges of 577nm - 647nm, 576nm -643nm and 574nm - 641nm, respectively, with a maximum output power of 12.04mW at 606 nm Conclusion - We demonstrated a compact all-room-temperature broadlytunable laser source operating in the visible spectral region between 574nm and 647nm. This laser source is based on second harmonic generation in PPKTP waveguides with different cross-sectional areas using an InAs/GaAs QD-ECDL References [I] E.U. Rafailov, M.A. Cataluna, and W. Sibbett, Nat. Phot. 1,395 (2007). [2] K.A. Fedorova, M.A. Cataluna, I. Krestnikov, D. Livshits, and E.U. Rafailov, Opt. Express 18(18), 19438-19443 (2010). [3] K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, and E.U. Rafailov, Laser Phys. Lett. 9, 790-795 (2012). [4] K.A. Fedorova,G.S. Sokolovskii, D.T. Nikitichev, P.R. Battle, I.L. Krestnikov, D.A. Livshits, and E.U. Rafailov, Opt. Lett. 38(15), 2835-2837 (2013) © 2014 IEEE.
Resumo:
We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.