1000 resultados para laser fluorination


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to make rapid measurements on small samples using laser fluorination enhances the potential of oxygen isotopes in the investigation of early inorganic materials and technologies. delta O-18 and Sr-87/Sr-86 values are presented for glass from two primary production sites, four secondary production sites and a consumer site in the Near East, dating from Late Antiquity to the medieval period. delta O-18 is in general slightly less effective than Sr-87/Sr-86 in discriminating between sources, as the spread of measured values from a single source is somewhat broader relative to the available range. However, while Sr-87/Sr-86 is derived predominantly from either the lime-bearing fraction of the glass-making sand or the plant ash used as a source of alkali, delta O-18 derives mainly from the silica. Thus the two measurements can provide complementary information. A comparison of delta O-18 for late Roman - Islamic glasses made on the coast of Syria-Palestine with those of previously analysed glasses from Roman Europe suggests that the European glasses are relatively enriched in O-18. This appears to contradict the view that most Roman glass was made using Levantine sand and possible interpretations are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxygen isotopes were measured in mineral separates from martian meteorites using laser fluorination and were found to be remarkably uniform in both δ18O and Δ17O, suggesting that martian magmas did not assimilate aqueously altered crust regardless of any other geochemical variations.

Measurements of Cl, F, H, and S in apatite from martian meteorites were made using the SIMS and NanoSIMS. Martian apatites are typically higher in Cl than terrestrial apatites from mafic and ultramafic rocks, signifying that Mars is inherently higher in Cl than Earth. Apatites from basaltic and olivine-phyric shergottites are as high in water as any terrestrial apatite from mafic and utramafic rocks, implying the possibility that martian magmas may be more similar in water abundance to terrestrial magmas than previously thought. Apatites from lherzolitic shergottites, nakhlites, chassignites, and ALH 84001 (all of which are cumulate rocks) are all lower in water than the basaltic and olivine-phyric shergottites, indicating that the slow-cooling accumulation process allows escape of water from trapped melts where apatite later formed. Sulfur is only high in some apatites from basaltic and olivine-phyric shergottites and low in all other SNCs from this study, which could mean that cumulate SNCs are low in all volatiles and that there are other controlling factors in basaltic and olivine-phyric magmas dictating the inclusion of sulfur into apatite.

Sulfur Kα X-rays were measured in SNC apatites using the electron probe. None of the peaks in the SNC spectra reside in the same position as anhydrite (where sulfur is 100% sulfate) or pyrite (where sulfur is 100% sulfide), but instead all SNC spectra peaks lie in between these two end member peaks, which implies that SNC apatites may be substituting some sulfide, as well as sulfate, into their structure. However, further work is needed to verify this hypothesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an SiF4 separation line, coupled to a laser fluorination system, which allows for an efficient combined silica d18O and d30Si analysis (50 min per sample). The required sample weight of 1.5-2.0 mg allows for high-resolution isotope studies on biogenic opal. Besides analytical tests, the new instrumentation set-up was used to analyse two marine diatom fractions (>63 µm, 10-20 µm) with different diatom species compositions extracted from a Bølling/Allerød-Holocene core section [MD01-2416, North-West (NW) Pacific] to evaluate the palaeoceanographic significance of the diatom isotopic signals and to address isotopic effects related to contamination and species-related isotope effects (vital and environmental effects). While d30Si offsets between the two fractions were not discernible, supporting the absence of species-related silicon isotope effects, systematic offsets occur between the d18O records. Although small, these offsets point to species-related isotope effects, as bias by contamination can be discarded. The new records strengthen the palaeoceanographic history during the last deglaciation in the NW Pacific characterized by a sequence of events with varying surface water structure and biological productivity. With such palaeoceanographic evolution it becomes unlikely that the observed systematic d18O offsets signal seasonal temperature variability. This calls for reconsideration of vital effects, generally excluded to affect d18O measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To measure the influence of spherical intraocular lens implantation and conventional myopic laser in situ keratomileusis on peripheral ocular aberrations. Setting: Visual & Ophthalmic Optics Laboratory, School of Optometry & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. Methods: Peripheral aberrations were measured using a modified commercial Hartmann-Shack aberrometer across 42° x 32° of the central visual field in 6 subjects after spherical intraocular lens (IOL) implantation and in 6 subjects after conventional laser in situ keratomileusis (LASIK) for myopia. The results were compared with those of age matched emmetropic and myopic control groups. Results: The IOL group showed a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, and greater rates of change of higher-order root-mean-square aberrations and total root-mean-square aberrations across the visual field than its emmetropic control group. However, coma trends were similar for the two groups. The LASIK group had a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, the opposite trend in coma across the field, and greater higher-order root-mean-square aberrations and total root-mean-square aberrations than its myopic control group. Conclusion: Spherical IOL implantation and conventional myopia LASIK increase ocular peripheral aberrations. They cause considerable increase in spherical aberration across the visual field. LASIK reverses the sign of the rate of change in coma across the field relative to that of the other groups. Keywords: refractive surgery, LASIK, IOL implantation, aberrations, peripheral aberrations