934 resultados para large deviation theory
Resumo:
The computational study commented by Touchette opens the door to a desirable generalization of standard large deviation theory for special, though ubiquitous, correlations. We focus on three interrelated aspects: (i) numerical results strongly suggest that the standard exponential probability law is asymptotically replaced by a power-law dominant term; (ii) a subdominant term appears to reinforce the thermodynamically extensive entropic nature of q-generalized rate function; (iii) the correlations we discussed, correspond to Q -Gaussian distributions, differing from Lévy?s, except in the case of Cauchy?Lorentz distributions. Touchette has agreeably discussed point (i), but, unfortunately, points (ii) and (iii) escaped to his analysis. Claiming the absence of connection with q-exponentials is unjustified.
Resumo:
A geometrically polar granular rod confined in 2D geometry, subjected to a sinusoidal vertical oscillation, undergoes noisy self-propulsion in a direction determined by its polarity. When surrounded by a medium of crystalline spherical beads, it displays substantial negative fluctuations in its velocity. We find that the large-deviation function (LDF) for the normalized velocity is strongly non-Gaussian with a kink at zero velocity, and that the antisymmetric part of the LDF is linear, resembling the fluctuation relation known for entropy production, even when the velocity distribution is clearly non-Gaussian. We extract an analogue of the phase-space contraction rate and find that it compares well with an independent estimate based on the persistence of forward and reverse velocities.
Resumo:
We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.
Resumo:
We construct a quasi-sure version (in the sense of Malliavin) of geometric rough paths associated with a Gaussian process with long-time memory. As an application we establish a large deviation principle (LDP) for capacities for such Gaussian rough paths. Together with Lyons' universal limit theorem, our results yield immediately the corresponding results for pathwise solutions to stochastic differential equations driven by such Gaussian process in the sense of rough paths. Moreover, our LDP result implies the result of Yoshida on the LDP for capacities over the abstract Wiener space associated with such Gaussian process.
Resumo:
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.
Resumo:
We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects. (C) 2015 AIP Publishing LLC.
Resumo:
We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smooth out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.
Resumo:
We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to $N$ dissipative baths by using a new approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyse the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.
Resumo:
We present a simple model that can be used to account for the rheological behaviour observed in recent experiments on micellar gels. The model combines attachment detachment kinetics with stretching due to shear, and shows well-defined jammed and flowing states. The large-deviation function (LDF) for the coarse-grained velocity becomes increasingly non-quadratic as the applied force F is increased, in a range near the yield threshold. The power fluctuations are found to obey a steady-state fluctuation relation (FR) at small F. However, the FR is violated when F is near the transition from the flowing to the jammed state although the LDF still exists; the antisymmetric part of the LDF is found to be nonlinear in its argument. Our approach suggests that large fluctuations and motion in a direction opposite to an imposed force are likely to occur in a wider class of systems near yielding.
Resumo:
The isometric fluctuation relation (IFR) P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.
Resumo:
In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution.
Resumo:
The problem of guessing a random string is revisited. A close relation between guessing and compression is first established. Then it is shown that if the sequence of distributions of the information spectrum satisfies the large deviation property with a certain rate function, then the limiting guessing exponent exists and is a scalar multiple of the Legendre-Fenchel dual of the rate function. Other sufficient conditions related to certain continuity properties of the information spectrum are briefly discussed. This approach highlights the importance of the information spectrum in determining the limiting guessing exponent. All known prior results are then re-derived as example applications of our unifying approach.
Resumo:
Calculations of the level width \gamma( L_1) and the f_12 and f_13 Coster-Kronig yields for atomic zinc have been performed with Dirac-Fock wave functions. For \gamma(L_1), a large deviation between theory and evaluated data exists. We include the incomplete orthogonality of the electron orbitals as well as the interchannel interaction of the decaying states. Orbital relaxation reduces the total rates in all groups of the electron-emission spectrum by about 10-20 %. Different, however, is the effect of the continuum interaction. The L_1-L_23X Coster-Kronig part of the spectrum is definitely reduced in its intensity, whereas the MM and MN spectra are slightly enhanced. This results in a reduction of Coster-Kronig yields, where for medium and heavy elements considerable discrepancies have been found in comparison to relativistic theory. Briefly, we discuss the consequences of our calculations for heavier elements.
Resumo:
Simulation-based assessment is a popular and frequently necessary approach to evaluation of statistical procedures. Sometimes overlooked is the ability to take advantage of underlying mathematical relations and we focus on this aspect. We show how to take advantage of large-sample theory when conducting a simulation using the analysis of genomic data as a motivating example. The approach uses convergence results to provide an approximation to smaller-sample results, results that are available only by simulation. We consider evaluating and comparing a variety of ranking-based methods for identifying the most highly associated SNPs in a genome-wide association study, derive integral equation representations of the pre-posterior distribution of percentiles produced by three ranking methods, and provide examples comparing performance. These results are of interest in their own right and set the framework for a more extensive set of comparisons.