21 resultados para kinetoplastids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery that genes are split into intron and exons, the studies of the mechanisms involved in splicing pointed to presence of consensus signals in an attempt to generalize the process for all living cells. However, as discussed in the present review, splicing is a theme full of variations. The trans-splicing of pre-mRNAs, the joining of exons from distinct transcripts, is one of these variations with broad distribution in the phylogenetic tree. The biological meaning of this phenomenon is discussed encompassing reactions resembling a possible noise to mechanisms of gene expression regulation. All of them however, can contribute to the generation of life diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA editing in kinetoplastid protozoa is a post-transcriptional process of uridine insertion or deletion in mitochondrial mRNAs. The process involves two RNA species, the pre-edited mRNA and in most cases a trans-acting guide RNA (gRNA). Sequences within gRNAs define the position and extend of mRNA editing. Both mRNAs and gRNAs are encoded by mitochondrial genes in the kinetoplast DNA (kDNA), which consists of thousands of small circular DNA molecules, called minicircles, encoding thousands of gRNAs, catenated together and with a few mRNA encoding larger circles, the maxicircles, to form a huge DNA network. Editing has been shown to result in translatable mRNAs of bona fide mitochondrial genes as well as novel alternatively edited transcripts that are involved in the maintenance of the kDNA itself. RNA editing occurs within large protein-RNA complexes, editosomes, containing gRNA, preedited and partially edited mRNAs and also structural and catalytically active proteins. Editosomes are diverse in both RNA and protein composition and undergoe structural remodeling during the maturation. The compositional and structural diversity of editosomes further underscores the complexity of the RNA editing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial protein import is essential for all eukaryotes and mediated by hetero-oligomeric protein translocases thought to be conserved within all eukaryotes. We have identified and analysed the function and architecture of the non-conventional outer membrane (OM) protein translocase in the early diverging eukaryote Trypanosoma brucei. It consists of six subunits that show no obvious homology to translocase components of other species. Two subunits are import receptors that have a unique topology and unique protein domains and thus evolved independently of the prototype receptors ​Tom20 and ​Tom70. Our study suggests that protein import receptors were recruited to the core of the OM translocase after the divergence of the major eukaryotic supergroups. Moreover, it links the evolutionary history of mitochondrial protein import receptors to the origin of the eukaryotic supergroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The miniexon gene has a central role in the processing of polycistronic pre-mRNA of kinetoplastids. It is added to the 5` extremity of each mRNA, supplying the 5`-capped structure to the molecule. Previous studies in Leishmania (Leishmania) major showed that the overexpression of the miniexon array attenuates the Virulence of the parasite in in vivo assays. The results presented here extend those findings to Vionnia subgenus. Leishmania (Vionnia) braziliensis was transfected with a cosmid harboring a tandem array of one hundred miniexon gene copies and then characterized by Northern blot analysis. The overexpression of the exogenous gene was confirmed and its effect on the virulence of L (V.) braziliensis was investigated in hamsters. In BALB/c mice we could not detect parasites during the course of 15 weeks of infection. In addition, hamsters infected with transfectants overexpressing the miniexon gene exhibited only a minor footpad swelling of late onset and failed to develop progressive lesion, these attenuated parasites could be recovered from the inoculation site 1 year after infection. The persistence of parasites in the host indicates that a stable line overexpressing the miniexon may be tested as live vaccine against leishmaniasis. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To further investigate phylogeny of kinetoplastid protozoa, the sequences of small subunit (18S) ribosomal RNA of nine bodonid isolates and ten isolates of insect trypanosomatids have been determined. The root of the kinetoplastid tree was attached to the branch of Bodo designis and/or Cruzella marina. The suborder Trypanosomatina appeared as a monophyletic group, while the suborder Bodonina was paraphyletic. Among bodonid lineages, parasitic organisms were intermingled with free-living ones, implying multiple transitions to parasitism and supporting the `vertebrate-first hypothesis'. The tree indicated that the genera Cryptobia and Bodo are artificial taxa. Separation of fish cryptobias and Trypanoplasma borreli as different genera was not supported. In trypanosomatids, the genera Leptomonas and Blastocrithidia were polyphyletic, similar to the genera Herpetomonas and Crithidia and in contrast to the monophyletic genera Trypanosoma and Phytomonas. This analysis has shown that the morphological classification of kinetoplastids does not in general reflect their genetic affinities and needs a revision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have sequenced genes encoding cathepsin L-like (CatL-like) cysteine proteases from isolates of Trypanosoma rangeli from humans, wild mammals and Rhodnius species of Central and South America. Phylogenetic trees of sequences encoding mature CatL-like enzymes of T rangeli and homologous genes from other trypanosomes, Leishmania spp. and bodonids positioned sequences of T rangeli (rangelipain) closest to T cruzi (cruzipain). Phylogenetic tree of kinetoplastids based on sequences of CatL-like was totally congruent with those derived from SSU rRNA and gGAPDH genes. Analysis of sequences from the CatL-like catalytic domains of 17 isolates representative of the overall phylogenetic diversity and geographical range of T rangeli supported all the lineages (A-D) previously defined using ribosomal and spliced leader genes. Comparison of the proteolytic activities of T rangeli isolates revealed heterogeneous banding profiles of cysteine proteases in gelatin gels, with differences even among isolates of the same lineage. CatL-like sequences proved to be excellent targets for diagnosis and genotyping of T rangeli by PCR. Data from CatL-like encoding genes agreed with results from previous studies of kDNA markers, and ribosomal and spliced leader genes, thereby corroborating clonal evolution, independent transmission cycles and the divergence of T rangeli lineages associated with sympatric species of Rhodnius. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Leishmania amazonensis telomerase gene was cloned by a polymerase chain reaction-based strategy using primers designed from a Leishmania major sequence that shared similarities with conserved telomerase motifs. The genes from three other species were cloned for comparative purposes. A ClustalW multiple-sequence alignment demonstrated that the Leishmania telomerases show greater homology with each other than with the proteins of other kinetoplastids and eukaryotes. Characterization experiments indicated that the putative Leishmania telomerase gene was probably in single copy and located in the largest chromosomes. A single messenger ribonucleic acid transcript was found in promastigotes. Phylogenetic analysis suggested that Leishmania telomerase might represent a liaison between the oldest and the newest branches of telomerases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose, an almost universally used energy and carbon source, is processed through several well-known metabolic pathways, primarily glycolysis. Glucose uptake is considered to be the first step in glycolysis. In kinetoplastids, a protozoan group that includes relevant human pathogens, the importance of glucose uptake in different phases of the life cycles is well established, and hexose transporters have been proposed as targets for therapeutic drugs. However, little is known about the evolutionary history of these hexose transporters. Hexose transporters contain an intracellular N- and C-termini, and 12 transmembrane spans connected by alternate intracellular and extracellular loops. In the present work we tested the hypothesis that the evolutionary rate of the transmembrane span is different from that of the whole sequence and that it is possible to define evolutionary units inside the sequence. The phylogeny of whole molecules was compared to that of their transmembrane spans and the loops connecting the transmembrane spans. We show that the evolutionary units in these proteins primarily consist of clustered rather than individual transmembrane spans. These analyses demonstrate that there are evolutionary constraints on the organization of these proteins; more specifically, the order of the transmembrane spans along the protein is highly conserved. Finally, we defined a signature sequence for the identification of kinetoplastid hexose transporters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report focuses on the 2005 Annual meeting held in Caxambu, Minas Gerais, Brazil that was convened and organized by the Brazilian Society of Protozoology http://www.sbpz.org.br/. This is an annual event and details of these meetings can be found on the Society's website. Within the space available it has been impossible to cover all the important and fascinating contributions and what is presented are our personal views of the meetings scientific highlights and new developments. The contents undoubtedly reflect each author's scientific interests and expertise. Fuller details of the round tables, seminars and posters can be consulted on line at http://www.sbpz.org.br/livroderesumos2005.php.