986 resultados para killer toxins


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Mediterranean region the fruits of the strawberry tree (Arbutus unedo L.) may be fermented and distilled to produce a traditional beverage very much appreciated in Southern Europe. The aim of the present work was to study the diversity of the yeast population and the killer activity of the isolates identified as Saccharomyces cerevisiae, obtained during solid state industrial fermentations of the arbutus berries. The identification of the isolates was performed by the 5.8S rRNA-ITS region restriction analysis and by sequencing the D1/D2 region of the large subunit of the rRNA gene. At the start of the fermentations, various non-Saccharomyces species were detected including Aureobasidium pullulans, Dothichiza pithyophila, Dioszegia zsoltii, Hanseniaspora uvarum and yeasts belonging to the genera Metschnikowia, Cryptococcus and Rhodotorula. However, as the biological processes progressed the number of different species decreased with S. cerevisiae and Pichia membranaefaciens becoming dominant at advanced stages of the must fermentation that is characterized by high concentrations of ethanol. Forty three isolates identified as S. cerevisiae were tested for killer activity against two sensitive reference strains and Zygosaccharomyces bailii. Their killer sensitivity in relation to five killer referenced toxins (K2, K5, K8, K9 and K10) was also studied. Out of the isolates analyzed, 95.3% were sensitive and 4.7% were tolerant against the killer toxins tested. Only three isolates revealed killer activity against one sensitive strain and two of them against the spoiler yeast Z. bailii. The microbiota obtained revealed an interesting potential to be used as starter cultures to overcome unpredictable uncontrolled fermentations of the arbutus fruits as well as in other applications of biotechnological interest. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. - In this study strains of yeasts isolated from the blood of human patients were analyzed taxonomically, their virulence factors were determined and compared, and phenotypic markers were used to compare the samples with respect to phenotypic differences across the range of patients as well as between samples isotated from the same patient.Methods. - the study involved a total of 75 strains of yeast isolated from the blood of in-patients of the Public Hospital, Botucatu, S (a) over tildeo Paulo, Brazil, with a clinical profile of fungemia. The hospital wards with the largest number of fungemias were neonatal intensive care units (ICUs) (32%) followed by gastric surgery (13.4%) and pediatric wards (10.7%). After identification, the samples were analyzed for the production of phospholipase and proteinase enzymes, and biotyped according to their susceptibility to killer toxins.Results. - the most frequent species found was Candida albicans (38.7%) followed by C. parapsilosis (30.7%). In terms of enzyme production, 98.7% of the 75 samples of yeast presented a strongly positive activity for proteinase; however, 78.7% did not present any phospholipasic activity. Six different biotypes were identified, the most frequent being 511 and 888.Conclusion. In association with phenotypic methods, genetic analyses should also be made of the samples under study to help in the rational development of a wider range of preventive measures and better control of hospital-contracted infections. (c) 2005 Published by Elsevier SAS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considerable losses during apple fruit storage occur due to microbiological diseases, mainly caused by Penicillium expansum, which in addition to fruit pulp deterioration produces patulin, a mycotoxin with carcinogenic and teratogenic activity. Biological control of post-harvest disease by antagonist yeasts focused on killer toxins is an appreciable alternative to the chemical fungicides, due to the low possibility of toxic residues demonstrated during fermentative processes. Twenty out of 44 yeasts (16 isolated from fruits, 10 from corn silage and 18 from laboratory anthill), showed antagonism against spores of P. expansum. The assay in solid medium pointed the strongest nutrient competition antagonism by D. hansenii strain C1 (31 mm inhibition diameter), while D. hansenii strain C7 (15 mm) showed higher antibiosis and parasitism pattern. In the following step the extracellular activity was tested performing the assay with culture supernatant in Yeast Medium agar, where C. guilliermondii P3 was more effective against conidia germination (inhibition rate of 58.15%) while P. ohmeri showed better inhibition on micelial growth (66.17%). The antibiosis showed by both yeasts could suggest probable mechanism associated with killer phenomenon, once both strains were killer positive against sensitive reference strains (S. cerevisiae NCYC 1006 and P. kluyveri CAY-15). In order to enhance the production of antifungal substance, these yeasts were cultivated with P. expansum, but the difference between culture supernatant obtained from yeasts cultivated alone and with mould was not significant (P > 0.05). The results demonstrated that the yeasts application constitute a promising tool, enhancing the biological control of P. expansum in post-harvest diseases of apple fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To assess the possible association of killer immunoglobulin-like receptor (KIR) genes, specifically KIR3DL1, KIR3DS1 and KIR3DL2, with ankylosing spondylitis (AS). Methods: 14 KIR genes were genotyped in 200 UK patients with AS and 405 healthy controls using multiplex polymerase chain reaction. Sequence-specific oligonucleotide probes were used to subtype 368 cases with AS and 366 controls for 12 KIR3DL2 alleles. Differences in KIR genotypes and KIR3DL2 allele frequencies were assessed using the χp2p test. Results: KIR3DL1 and KIR3DS1 gene frequencies were very similar in cases with AS and controls (odds ratio = 1.5, 95% confidence interval 0.8 to 3.0, and odds ratio = 1.02, 95% confidence interval 0.2 to 5.3, respectively). KIR3DL2 allele frequencies were not significantly different between cases with AS and controls. Conclusions: Neither the KIR gene content of particular KIR haplotypes nor KIR3DL2 polymorphisms contribute to AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since their inception in 1962, Petri nets have been used in a wide variety of application domains. Although Petri nets are graphical and easy to understand, they have formal semantics and allow for analysis techniques ranging from model checking and structural analysis to process mining and performance analysis. Over time Petri nets emerged as a solid foundation for Business Process Management (BPM) research. The BPM discipline develops methods, techniques, and tools to support the design, enactment, management, and analysis of operational business processes. Mainstream business process modeling notations and workflow management systems are using token-based semantics borrowed from Petri nets. Moreover, state-of-the-art BPM analysis techniques are using Petri nets as an internal representation. Users of BPM methods and tools are often not aware of this. This paper aims to unveil the seminal role of Petri nets in BPM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune system has to recognize and destroy abnormal or infected cells to maintain homeostasis. Natural killer (NK) cells directly recognize and kill transformed or virus-infected cells without prior sensitization. We have studied both virus-infected and tumor cells in order to identify the target structures involved in triggering NK activity. Mouse/human cell hybrids containing various human chromosomes were used as targets. The human chromosome responsible for activating NK cell killing was identified to chromosome number 6. The results suggest that activated NK cells recognize ligands that are encoded on human chromosome 6. We showed that the ligand on the target cell side was intercellular adhesion molecule 2 (ICAM-2). There was no difference in the level of expression of ICAM-2, however, but a drastic difference was seen in the distribution of the molecule: ICAM-2 was evenly distributed on the surface of the NK-resistant cells, but almost totally redistributed to the tip of uropods, bud-like extensions, which were absent from the parental cells. Interestingly, the gene coding for cytoskeletal linker protein ezrin has been localized to human chromosome 6, and there was a colocalization of ezrin and ICAM-2 in the uropods. Furthermore, the transfected human ezrin into NK cell-resistant cells induced uropod formation, ICAM-2 and ezrin redistribution to newly formed uropods, and sensitized target cells to NK cell killing. These data reveal a novel form of NK cell recognition: target structures are already present on normal cells; they become detectable only after abnormal redistribution into hot spots on the target cell membrane. NK cells are central players in the defence against virus infections. They inhibit the spread of infection, allowing time for specific immune responses to develop. The virus-proteins that directly activate human NK cell killing are largely unknown. We studied the sensitivity of virus-specific early proteins of Semliki Forest virus (SFV) to NK killing. The viral non-structural proteins (nsP1-4) translated early in the virus cycle were transfected in NK-resistant cells. Viral early gene nsP1 alone efficiently sensitized target cells to NK activity, and the tight membrane association of nsP1 seems to be critical in the triggering of NK killing. NsP1 protein colocalized with (redistributed) ezrin in filopodia-like structures to which the NK cells were bound. The results suggest that also in viral infections NK cells react to rapid changes in membrane topography. Based on the results of this thesis, a new model of target cell recognition of NK cells can be suggested: reorganization of the cytoskeleton induces alterations in cell surface topography, and this new pattern of surface molecules is recognized as "altered-self".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the structures and properties of heat-stable, non-protein, and mammalian cell-toxic compounds produced by spore-forming bacilli isolated from indoor air of buildings and from food. Little information is available on the effects and occurrence of heat-stable non-protein toxins produced by bacilli in moisture-damaged buildings. Bacilli emit spores that move in the air and can serve as the carriers of toxins, in a manner similar to that of the spores of toxic fungi found in contaminated indoor air. Bacillus spores in food cause problems because they tolerate the temperatures applied in food manufacture and the spores later initiate growth when food storage conditions are more favorable. Detection of the toxic compounds in Bacillus is based on using the change in mobility of boar spermatozoa as an indicator of toxic exposure. GC, LC, MS, and nuclear magnetic resonance NMR spectroscopy were used for purification, detection, quantitation, and analysis of the properties and structures of the compounds. Toxicity and the mechanisms of toxicity of the compounds were studied using boar spermatozoa, feline lung cells, human neural cells, and mitochondria isolated from rat liver. The ionophoric properties were studied using the BLM (black-lipid membrane) method. One novel toxin, forming ion channels permeant to K+ > Na+ > Ca2+, was found and named amylosin. It is produced by B. amyloliquefaciens isolated from indoor air of moisture-damaged buildings. Amylosin was purified with an RP-HPLC and a monoisotopic mass of 1197 Da was determined with ESI-IT-MS. Furthermore, acid hydrolysis of amylosin followed by analysis of the amino acids with the GS-MS showed that it was a peptide. The presence of a chromophoric polyene group was found using a NMR spectroscopy. The quantification method developed for amylosin based on RP-HPLC-UV, using the macrolactone polyene, amphotericin B (MW 924), as a reference compound. The B. licheniformis strains isolated from a food poisoning case produced a lipopeptide, lichenysin A, that ruptured mammalian cell membranes and was purified with a LC. Lichenysin A was identified by its protonated molecules and sodium- and potassium- cationized molecules with MALDI-TOF-MS. Its protonated forms were observed at m/z 1007, 1021 and 1035. The amino acids of lichenysin A were analyzed with ESI-TQ-MS/MS and, after acid hydrolysis, the stereoisomeric forms of the amino acids with RP-HPLC. The indoor air isolates of the strain of B. amyloliquefaciens produced not only amylosin but also lipopeptides: the cell membrane-damaging surfactin and the fungicidal fengycin. They were identified with ESI-IT-MS observing their protonated molecules, the sodium- and potassium-cationized molecules and analysing the MS/MS spectra. The protonated molecules of surfactin and fengycin showed m/z values of 1009, 1023, and 1037 and 1450, 1463, 1493, and 1506, respectively. Cereulide (MW 1152) was purified with RP-HPLC from a food poisoning strain of B. cereus. Cereulide was identified with ESI-TQ-MS according to the protonated molecule observed at m/z 1154 and the ammonium-, sodium- and potassium-cationized molecules observed at m/z 1171, 1176, and 1192, respectively. The fragment ions of the MS/MS spectrum obtained from the protonated molecule of cereulide at m/z 1154 were also interpreted. We developed a quantification method for cereulide, using RP-HPLC-UV and valinomycin (MW 1110, which structurally resembles cereulide) as the reference compound. Furthermore, we showed empirically, using the BLM method, that the emetic toxin cereulide is a specific and effective potassium ionophore of whose toxicity target is especially the mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

his study elucidates some structural and biological features of galactose-binding variants of the cytotoxic proteins ricin and abrin. An isolation procedure is reported for ricin variants from Ricinus communis seeds by using lactamyl-Sepharose affinity matrix, similar to that reported previously for variants of abrin from Abrus precatorius seeds [Hegde, R., Maiti, T. K. & Podder, S. K. (1991) Anal. Biochem. 194, 101–109]. Ricin variants, subfractionated on carboxymethyl-Sepharose CL-6B ion-exchange chromatography, were characterized further by SDS/PAGE, IEF and a binding assay. Based on the immunological cross-reactivity of antibody raised against a single variant of each of ricin and abrin, it was established that all the variants of the corresponding type are immunologically indistinguishable. Analysis of protein titration curves on an immobilized pH gradient indicated that variants of abrin I differ from other abrin variants, mainly in their acidic groups and that variance in ricin is a cause of charge substitution. Detection of subunit variants of proteins by two-dimensional gel electrophoresis showed that there are twice as many subunit variants as there are variants of holoproteins, suggesting that each variant has a set of subunit variants, which, although homologous, are not identical to the subunits of any other variant with respect to pI. Seeds obtained from polymorphic species of R. communis showed no difference in the profile of toxin variants, as analyzed by isoelectric focussing. Toxin variants obtained from red and white varieties of A. precatorius, however, showed some difference in the number of variants as well as in their relative intensities. Furthermore, variants analyzed from several single seeds of A. precatorius red type revealed a controlled distribution of lectin variants in three specific groups, indicating an involvement of at least three genes in the production of Abrus lectins. The complete absence or presence of variants in each group suggested a post-translational differential proteolytic processing, a secondary event in the production of abrin variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three toxins, abrin-I, -II, and -III, and two agglutinins, APA-I and -II, were purified from the seeds of Abrus precatorius by lactamyl-Sepharose affinity chromatography followed by gel filtration and DEAE-Sephacel column chromatography. abrin-I did not bind on DEAE-Sephacel column chromatography and the bound abrin-II, abrin-III, APA-I, and APA-II were eluted with a sodium acetate gradient. The identity of each protein was established by sodium dodecylsulfate-polyacrylamide gel electrophoresis and isoelectric focusing. The relative molecular weights are abrin-I, 64,000; abrin-II and abrin-III, 63,000 each: APA-I, 130,000; and APA-II, 128,000. Isoelectric focusing revealed microheterogeneity due to the presence of isoforms in each protein. Toxicity and binding studies further confirmed the differences among the lectins. The time course of inhibition of protein synthesis in thymocytes by the toxins showed lag times of 78, 61, and 72 min with Ki's of 0.55, 0.99, and 0.74 ms−1 at a 0.63 nImage concentration of each of abrin-I, -II, and -III, respectively. A Scatchard plot obtained from the equilibrium measurement for the lectins binding to lactamyl-Sepharose beads showed nonlinearity, indicating a cooperative mode of binding which was not observed for APA-I binding to Sepharose 4B beads. Further, by the criterion of the isoelectric focusing profile, it was shown that the least toxic abrin-I and the highly toxic abrin-II isolated by lactamyl-Sepharose chromatography were not retained on a low-affinity Sepharose 4B matrix, which signifies the necessity of using a high-affinity matrix for the purification of the lectins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetic data on inhibition of protein synthesis in thymocyte by three abrins and ricin have been obtained. The intrinsic efficiencies of A chains of four toxins to inactivate ribosomes, as analyzed by k1-versus-concentration plots were abrin II, III > ricin > abrin I. The lag times were 90, 66, 75 and 105 min at a 0.0744 nM concentration of each of abrin I, II, III and ricin, respectively. To account for the observed differences in the dose-dependent lag time, functional and structural variables of toxins such as binding efficiency of B chains to receptors and low-pH-induced structural alterations have been analyzed. The association constants obtained by stopped flow studies showed that abrin-I (4.13 × 105 M−1 s−1) association with putative receptor (4-methylumbelliferyl-α-D-galactoside) is nearly two times more often than abrin III (2.6 × 105 M−1 s−1) at 20°C. Equillibrium binding constants of abrin I and II to thymocyte at 37°C were 2.26 × 107 M−1 and 2.8 × 107 M−1 respectively. pH-induced structural alterations as studied by a parallel enhancement in 8-anilino-L-naphthalene sulfonate fluorescence revealed a high degree of qualitative similarity. These results taken with a nearly identical concentration-independent lag time (minimum lag of 41–42 min) indicated that the binding efficiencies and internalization efficiencies of these toxins are the same and that the observed difference in the dose-dependent lag time is causally related to the proposed processing event. The rates of reduction of inter-subunit disulfide bond, an obligatory step in the intoxication process, have been measured and compared under a variety of conditions. Intersubunit disulfide reduction of abrin I is fourfold faster than that of abrin II at pH 7.2. The rate of disulfide reduction in abrin I could be decreased 1 I-fold by adding lactose, compared to that without lactose. The observed differences in the efficiencies of A chains, the dose-dependent lag period, the modulating effect of lactose on the rates of disulfide reduction and similarity in binding properties make the variants a valuable tool to probe the processing events in toxin transport in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When administered orally, Phyllanthus emblica, an excellent source of vitamin C (ascorbate), has been found to enhance natural killer (NK) cell activity and antibody dependent cellular cytotoxicity (ADCC) in syngeneic BALB/c mice, bearing Dalton's lymphoma ascites (DLA) tumor. P. emblica elicited a 2-fold increase in splenic NK cell activity on day 3 post tumor inoculation. Enhanced activity was highly significant on days 3, 5, 7 and 9 after tumor inoculation with respect to the untreated tumor bearing control. A significant enhancement in ADCC was documented on days 3, 7, 9, 11 and 13 in drug treated mice as compared to the control. An increase in life span (ILS) of 35% was recorded in tumor bearing mice treated with P. emblica. This increased survival was completely abrogated when NK cell and killer (K) cell activities were depleted either by cyclophosphamide or anti-asialo-GM, antibody treatment. These results indicate: (a) an absolute requirement for a functional NK cell or K cell population in order that P. emblica can exert its effect on tumor bearing animals, and (b) the antitumor activity of P. emblica is mediated primarily through the ability of the drug to augment natural cell mediated cytotoxicity.