883 resultados para isometry groups


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove that the group of continuous isometries for the Kobayashi or Caratheodory metrics of a strongly convex domain in C-n is compact unless the domain is biholomorphic to the ball. A key ingredient, proved using differential geometric ideas, is that a continuous isometry between a strongly convex domain and the ball has to be biholomorphic or anti-biholomorphic. Combining this with a metric version of Pinchuk's rescaling technique gives the main result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the ideas behind the package 'isometry', implemented in Maple to calculate isometry groups of dimensions 2, 3 and 4 in General Relativity. The package extends the functionality of previous programs written to perform invariant classification of space-times in General Relativity. Programming solutions used to surmount problems encountered with the calculation of eigenvectors and the determination of the signs of expressions are described. We also show how the package can be used to find the Killing vectors of a space-time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Inönü-Wigner contractions which interrelate the Lie algebras of the isometry groups of metric spaces are discussed with reference to deformations of the absolutes of the spaces. A general formula is derived for the Lie algebra commutation relations of the isometry group for anyN-dimensional metric space. These ideas are illustrated by a discussion of important particular cases, which interrelate the four-dimensional de Sitter, Poincaré, and Galilean groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers left-invariant control systems defined on the orthonormal frame bundles of simply connected manifolds of constant sectional curvature, namely the space forms Euclidean space E-3, the sphere S-3 and Hyperboloid H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1, 3). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. In the Euclidean case the elements of the Lie algebra se(3) are often referred to as twists. For constant twist motions, the corresponding curves g(t) is an element of SE(3) are known as screw motions, given in closed form by using the well known Rodrigues' formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper tackles the path planning problem for oriented vehicles travelling in the non-Euclidean 3-Dimensional space; spherical space S3. For such problem, the orientation of the vehicle is naturally represented by orthonormal frame bundle; the rotation group SO(4). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to control systems defined on Lie groups. The oriented vehicles, in this case, are constrained to travel at constant speed in a forward direction and their angular velocities directly controlled. In this paper we identify controls that induce steady motions of these oriented vehicles and yield closed form parametric expressions for these motions. The paths these vehicles trace are defined explicitly in terms of the controls and therefore invariant with respect to the coordinate system used to describe the motion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motivated by the motion planning problem for oriented vehicles travelling in a 3-Dimensional space; Euclidean space E3, the sphere S3 and Hyperboloid H3. For such problems the orientation of the vehicle is naturally represented by an orthonormal frame over a point in the underlying manifold. The orthonormal frame bundles of the space forms R3,S3 and H3 correspond with their isometry groups and are the Euclidean group of motion SE(3), the rotation group SO(4) and the Lorentzian group SO(1; 3) respectively. Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. For constant twist motions or helical motions, the corresponding curves g(t) 2 SE(3) are given in closed form by using the well known Rodrigues’ formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw/helical motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G be a Kahler group admitting a short exact sequence 1 -> N -> G -> Q -> 1 where N is finitely generated. (i) Then Q cannot be non-nilpotent solvable. (ii) Suppose in addition that Q satisfies one of the following: (a) Q admits a discrete faithful non-elementary action on H-n for some n >= 2. (b) Q admits a discrete faithful non-elementary minimal action on a simplicial tree with more than two ends. (c) Q admits a (strong-stable) cut R such that the intersection of all conjugates of R is trivial. Then G is virtually a surface group. It follows that if Q is infinite, not virtually cyclic, and is the fundamental group of some closed 3-manifold, then Q contains as a finite index subgroup either a finite index subgroup of the three-dimensional Heisenberg group or the fundamental group of the Cartesian product of a closed oriented surface of positive genus and the circle. As a corollary, we obtain a new proof of a theorem of Dimca and Suciu in Which 3-manifold groups are Kahler groups? J. Eur. Math. Soc. 11 (2009) 521-528] by taking N to be the trivial group. If instead, G is the fundamental group of a compact complex surface, and N is finitely presented, then we show that Q must contain the fundamental group of a Seifert-fibered 3-manifold as a finite index subgroup, and G contains as a finite index subgroup the fundamental group of an elliptic fibration. We also give an example showing that the relation of quasi-isometry does not preserve Kahler groups. This gives a negative answer to a question of Gromov which asks whether Kahler groups can be characterized by their asymptotic geometry.