929 resultados para internal P loading
Resumo:
Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Orthophosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, particulate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TIP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.
Resumo:
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.
Resumo:
Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang,and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme. At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria, thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.
Resumo:
Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.
Resumo:
1. We compared the baseline phosphorus (P) concentrations inferred by diatom-P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2-200 mu g TP L-1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 mu g TP L-1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 mu g TP L-1 in only 4). 3. The difference between baseline and present-day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long-term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre-enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in-lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over-estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.
Resumo:
Eutrophication is a persistent problem in many fresh water lakes. Delay in lake recovery following reductions in external loading of phosphorus, the limiting nutrient in fresh water ecosystems, is often observed. Models have been created to assist with lake remediation efforts, however, the application of management tools to sediment diagenesis is often neglected due to conceptual and mathematical complexity. SED2K (Chapra et al. 2012) is proposed as a "middle way", offering engineering rigor while being accessible to users. An objective of this research is to further support the development and application SED2K for sediment phosphorus diagenesis and release to the water column of Onondaga Lake. Application of SED2K has been made to eutrophic Lake Alice in Minnesota. The more homogenous sediment characteristics of Lake Alice, compared with the industrially polluted sediment layers of Onondaga Lake, allowed for an invariant rate coefficient to be applied to describe first order decay kinetics of phosphorus. When a similar approach was attempted on Onondaga Lake an invariant rate coefficient failed to simulate the sediment phosphorus profile. Therefore, labile P was accounted for by progressive preservation after burial and a rate coefficient which gradual decreased with depth was applied. In this study, profile sediment samples were chemically extracted into five operationally-defined fractions: CaCO3-P, Fe/Al-P, Biogenic-P, Ca Mineral-P and Residual-P. Chemical fractionation data, from this study, showed that preservation is not the only mechanism by which phosphorus may be maintained in a non-reactive state in the profile. Sorption has been shown to contribute substantially to P burial within the profile. A new kinetic approach involving partitioning of P into process based fractions is applied here. Results from this approach indicate that labile P (Ca Mineral and Organic P) is contributing to internal P loading to Onondaga Lake, through diagenesis and diffusion to the water column, while the sorbed P fraction (Fe/Al-P and CaCO3-P) is remaining consistent. Sediment profile concentrations of labile and total phosphorus at time of deposition were also modeled and compared with current labile and total phosphorus, to quantify the extent to which remaining phosphorus which will continue to contribute to internal P loading and influence the trophic status of Onondaga Lake. Results presented here also allowed for estimation of the depth of the active sediment layer and the attendant response time as well as the sediment burden of labile P and associated efflux.
Resumo:
Morison's equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also been compared to ocean surface wave loading. It is shown that Morison's equation is an appropriate approach to estimate internal wave loading even for SPAR and semi-submersible platforms, and the internal solitary wave load on floating platforms is comparable to surface wave counterpart. Moreover, the effects of the layers with different thickness on internal solitary wave force are investigated.
Resumo:
Sugars in plants, derived from photosynthesis, act as substrates for energy metabolism and the biosynthesis of complex carbohydrates, providing sink tissues with the necessary resources to grow and to develop. In addition, sugars can act as secondary messengers, with the ability to regulate plant growth and development in response to biotic and abiotic stresses. Sugar-signalling networks have the ability to regulate directly the expression of genes and to interact with other signalling pathways. Photosynthate is primarily transported to sink tissues as sucrose via the phloem. Under phosphorus (P) starvation, plants accumulate sugars and starch in their leaves. Increased loading of sucrose to the phloem under P starvation not only functions to relocate carbon resources to the roots, which increases their size relative to the shoot, but also has the potential to initiate sugar-signalling cascades that alter the expression of genes involved in optimizing root biochemistry to acquire soil phosphorus through increased expression and activity of inorganic phosphate transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use. This review looks at the evidence for the involvement of phloem sucrose in co-ordinating plant responses to P starvation at both the transcriptional and physiological levels.
Resumo:
Over the last decade, major advances have been made in our understanding of how plants sense, signal, and respond to soil phosphorus (P) availability (Amtmann et al., 2006; White and Hammond, 2008; Nilsson et al., 2010; Yang and Finnegan, 2010; Vance, 2010; George et al., 2011). Previously, we have reviewed the potential for shoot-derived carbohydrate signals to initiate acclimatory responses in roots to low P availability. In this context, these carbohydrates act as systemic plant growth regulators (Hammond and White, 2008). Photosynthate is transported primarily to sink tissues as Suc via the phloem. Under P starvation, plants accumulate sugars and starch in their leaves. Increased loading of Suc to the phloem under P starvation primarily functions to relocate carbon resources to the roots, which increases their size relative to the shoot (Hermans et al., 2006). The translocation of sugars via the phloem also has the potential to initiate sugar signaling cascades that alter the expression of genes involved plant responses to low P availability. These include optimizing root biochemistry to acquire soil P, through increased expression and activity of inorganic phosphate (Pi) transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use (Hammond and White, 2008). Here, we provide an Update to the field of plant signaling responses to low P availability and the interactions with sugar signaling components. Advances in the P signaling pathways and the roles of hormones in signaling plant responses to low P availability are also reviewed, and where possible their interactions with potential sugar signaling pathways.
Resumo:
Developing new perennial pasture legumes for low-P soils is a priority for Australian Mediterranean agro-ecosystems, where soil P availability is naturally low. As legumes tend to require higher P inputs than non-legumes, the ability of these plants to fix N2 under varying soil P levels must be determined. Therefore, the objective of this study was to investigate the influence of soil P supply on plant N status and nodule formation in 11 perennial legumes, including some novel pasture species. We investigated the effect of applying soil P, ranging from 0 to 384 μg P/g dry soil, on plant N status and nodulation in a glasshouse. Without exogenous P supply, shoot N concentration and N : P ratio were higher than at 6 μg P/g soil. Shoot N concentration and N : P ratio then changed little with further increase in P supply. There was a close positive correlation between the number of nodules and shoot P concentration in 7 of the 11 species. Total nodule dry weight and the percentage of plant dry weight that consisted of nodules increased when P supply increased from 6 to 48 μg P/g. Without exogenous P addition, N : P ratios partitioned into a two-group distribution, with species having a N : P ratio of either >70 or <50 g/g. We suggest that plants with a high N : P ratio may take up N from the soil constitutively, while those with a low N : P ratio may regulate their N uptake in relation to internal P concentration. The flexibility of the novel pasture legumes in this study to adjust their leaf N concentrations under different levels of soil P supplements other published evidence of good growth and high P uptake and P-use efficiency under low soil P supply and suggests their potential as pasture plants in low-P soils in Australian Mediterranean agro-ecosystems warrants further attention.
Resumo:
The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.
Resumo:
Eutrophication and enhanced internal nutrient loading of the Baltic Sea are most clearly reflected by increased late-summer cyanobacterial blooms, which often are toxic. In addition to their toxicity to animals, phytoplankton species can be allelopathic, which means that they produce chemicals that inhibit competing phytoplankton species. Such interspecific chemical warfare may lead to the formation of harmful phytoplankton blooms and the spread of exotic species into new habitats. This is the first report on allelopathic effects in brackish-water cyanobacteria. The experimental studies presented in this thesis showed that the filamentous cyanobacteria Anabaena sp., Aphanizomenon flos-aquae and Nodularia spumigena are capable of decreasing the growth of other phytoplankton species, especially cryptophytes, but also diatoms. The detected allelopathic effects are rather transitory, and some co-occurring species show tolerance to them. The allelochemicals are excreted during active growth and they decrease cell numbers, chlorophyll a content and carbon uptake of the target species. Although the more specific modes of action or chemical structures of the allelochemicals remain to be studied, the results clearly indicate that the allelopathic effects are not caused by the hepatotoxin, nodularin. On the other hand, cyanobacteria stimulated the growth of bacteria, other cyanobacteria, chlorophytes and flagellates in a natural phytoplankton community. In a long-term data analysis of phytoplankton abundances and hydrography of the northern Baltic Sea, a clear change was observed in phytoplankton community structure, together with a transition in environmental factors, between the late 1970s and early 2000s. Surface water salinity decreased, whereas water temperature and the concentration of dissolved inorganic nitrogen increased. In the phytoplankton community, the biomass of cyanobacteria, chrysophytes and chlorophytes significantly increased, and the late-summer phytoplankton community became increasingly cyanobacteria-dominated. In contrast, the biomass of cryptophytes decreased. The increased temperature and nutrient concentrations probably explain most of the changes in phytoplankton, but my results suggest that the possible effect of chemically mediated biological interactions should also be considered. Cyanobacterial allelochemicals can cause additional stress to other phytoplankton in the nutrient-depleted late-summer environment and thus contribute to the formation and persistence of long-lasting cyanobacterial mass occurrences. On the other hand, cyanobacterial blooms may either directly or indirectly promote the growth of some phytoplankton species. Therefore, a further increase in cyanobacteria will probably shape the late-summer pelagic phytoplankton community by stimulating some species, but inhibiting others.
Resumo:
Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .
Resumo:
Static and dynamic behavior of the epitaxially grown dual gate trench 4H-SiC junction field effect transistor (JFET) is investigated. Typical on-state resistance Ron was 6-10mΩcm2 at VGS = 2.5V and the breakdown voltage between the range of 1.5-1.8kV was realized at VGS = -5V for normally-off like JFETs. It was found that the turn-on energy delivers the biggest part of the switching losses. The dependence of switching losses from gate resistor is nearly linear, suggesting that changing the gate resistor, a way similar to Si-IGBT technology, can easily control di/dt and dv/dt. Turn-on losses at 200°C are lower compared to those at 25°C, which indicates the influence of the high internal p-type gate layer resistance. Inductive switching numerical analysis suggested the strong influence of channel doping conditions on the turn-on switching performance. The fast switching normally-off JFET devices require heavily doped narrow JFET channel design. © (2009) Trans Tech Publications, Switzerland.