999 resultados para intelligent transport
Resumo:
This issue of the FAL bulletin analyses the role of intelligent transport systems (ITS) in sea port logistics in Latin America.
Resumo:
Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident.
Resumo:
Diplomityössä on tutkittu tieliikennetelematiikkalaitteiden huoltoon liittyvän verkoston toiminnan kehittämistä. Tutkittuun verkostoon kuuluvat Valtti-yksikkö (Valtakunnallinen liikennetelematiikka ja liikenteenhallinnan tietopalvelut), ELYkeskukset, tieliikennekeskukset, hallinta- ja valvontatoimija sekä huoltotoimijat. Tarkoituksena oli selvittää, kuinka verkoston toiminnan tehokkuutta voidaan parantaa. Tähän sisältyi verkoston toimijoiden tunnistaminen sekä toimijoiden roolien ja vastuiden määrittäminen. Lisäksi on tutkittu kuinka verkoston toimijoiden välistä tiedonkulkua voidaan parantaa ja kuinka ITIL-viitekehys soveltuu verkoston toimintaan. Diplomityötä varten on haastateltu verkoston toimijoiden edustajia heidän näkemyksistään verkoston toiminnasta ja sen kehittämistarpeista.
Resumo:
Recent advancement in wireless communication technologies and automobiles have enabled the evolution of Intelligent Transport System (ITS) which addresses various vehicular traffic issues like traffic congestion, information dissemination, accident etc. Vehicular Ad-hoc Network (VANET) a distinctive class of Mobile ad-hoc Network (MANET) is an integral component of ITS in which moving vehicles are connected and communicate wirelessly. Wireless communication technologies play a vital role in supporting both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication in VANET. This paper surveys some of the key vehicular wireless access technology standards such as 802.11p, P1609 protocols, Cellular System, CALM, MBWA, WiMAX, Microwave, Bluetooth and ZigBee which served as a base for supporting both Safety and Non Safety applications. It also analyses and compares the wireless standards using various parameters such as bandwidth, ease of use, upfront cost, maintenance, accessibility, signal coverage, signal interference and security. Finally, it discusses some of the issues associated with the interoperability among those protocols.
Resumo:
Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems
Resumo:
Sviluppo ed implementazione di protocolli per il monitoraggio di traffico stradale sulla piattaforma di simulazione iTETRIS per la raccolta di informazioni da utilizzare in applicazioni di Intelligent Transport System.
Resumo:
This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments.
Resumo:
Transport climate change impacts have become a worldwide concern. The use of Intelligent Transport Systems (ITS) could contribute to a more effective use of resources in toll road networks. Management of toll plazas is central to the reduction of greenhouse gas (GHG) emissions, as it is there that bottlenecks and congestion occur. This study focuses on management strategies aimed at reducing climate change impacts of toll plazas by managing toll collection systems. These strategies are based on the use of different collection system technologies – Electronic Toll Collection (ETC) and Open Road Tolling (ORT) – and on queue management. The carbon footprint of various toll plazas is determined by a proposed integrated methodology which estimates the carbon dioxide (CO2) emissions of the different operational stages at toll plazas (deceleration, service time, acceleration, and queuing) for the different toll collection systems. To validate the methodology, two main-line toll plazas of a Spanish toll highway were evaluated. The findings reveal that the application of new technologies to toll collection systems is an effective management strategy from an environmental point of view. The case studies revealed that ORT systems lead to savings of up to 70% of CO2 emissions at toll plazas, while ETC systems save 20% comparing to the manual ones. Furthermore, queue management can offer a 16% emissions savings when queue time is reduced by 116 seconds. The integrated methodology provides an efficient environmental management tool for toll plazas. The use of new technologies is the future of the decarbonization of toll plazas.
Resumo:
With the continuous development in the fields of sensors, advanced data processing and communications, road transport oriented intelligent applications and services have reached a significant maturity and complexity. Cooperative ITS services, based on the idea of sharing accurate information among road entities, are currently being tested on a large scale by different initiatives. The field operational test (FOTsis) project contributes to the deployment environment with services that involve a significant number of entities out of the vehicle. This made necessary the specification of an architecture which, based on the ISO ITS station reference architecture for communications, could support the requirements of the services proposed in the project. During the project, internal implementation tests and external interoperability tests have resulted in the validation of the proposed architecture. At the same time, these tests have had as a result the awareness of areas in which the FOTsis architecture could be completed, mainly to take full advantage of all the emerging and foreseeable data sources which may be relevant in the road environment. In this study, the authors will outline an approach that, based on the current cooperative ITS architecture and the SmartCities and Internet Of Things (IoT) architectures, can provide a common convergence platform to maximise the information available for ITS purposes.
Resumo:
El presente Trabajo de Fin de Grado se enmarca dentro de un sistema de control y desarrollo de sistemas inteligentes de transporte (ITS). Este Trabajo consta de varias líneas de desarrollo, que se engloban dentro de dicho marco y surgen de la necesidad de aumentar la seguridad, flujo, estructura y mantenimiento de las carreteras incorporando las tecnologías más recientes. En primer lugar, el presente Trabajo se centra en el desarrollo de un nuevo sistema de procesamiento de datos de tráfico en tiempo real que aprovecha las tecnologías de Big Data, Cloud Computing y Map-Reduce que han surgido estos últimos años. Para ello se realiza un estudio previo de los datos de tráfico vial que originan los vehículos que viajan por carreteras. Centrándose en el sistema empleado por la Dirección General de Tráfico de España y comparándolos con el de las Empresas basadas en servicios de localización (LBS). Se expone el modelo Hadoop utilizado así como el proceso Map-Reduce implementado en este sistema analizador. Por último los datos de salida son preparados y enviados a un módulo web básico que actúa como Sistema de Información Geográfica (GIS).---ABSTRACT---This Final Degree Project is part of a control system and development of intelligent transport systems (ITS). This work is part of a several lines of development, which are included within this framework and arise from the need to increase security, flow, structure and maintenance of roads incorporating the latest technologies. First, this paper focuses on the development of a new data processing system of real-time traffic that takes advantage of Big Data, Cloud Computing and Map-Reduce technologies emerged in our recent years. It is made a preliminary study of road traffic data originated by vehicles traveling by road. Focusing on the system used by the Dirección General de Tráfico of Spain and compared with that of the companies offering location based services (LBS). It is exposed the used Hadoop model and the Map-Reduce process implemented on this analyzer system. Finally, the output data is prepared and sent to a basic web module that acts as Geographic Information System (GIS).