991 resultados para intact sandstones


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supporting data are included in PDF and CSV files; any additional data may be obtained from the corresponding author (e-mail: j.vinogradov@imperial.ac.uk). TOTAL is thanked for partial support of Jackson's Chair in Geological Fluid Mechanics and for supporting the activities of the TOTAL Laboratory for Reservoir Physics at Imperial College London where these experiments were conducted. The Editor thanks Andre Revil and Paul Glover for their assistance in evaluating this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural stone has been a popular and reliable building material throughout history appearing in many historic monuments and in more recent buildings. Research into the intrinsic properties of specific stones is important because it gives us a greater understanding of the factors that limit and act on them. This can help prevent serious problems from occurring in our buildings bringing both esthetic benefits and financial savings. To this end, the main objective of this research has been to study the influence of the fabric and the mineral composition of two types of sandstone on their durability. The first is a red continental sandstone from the Buntsandstein Age called “Molinaza Roja”, which is quarried in Montoro (Cordoba). The second is quarried in Ronda (Malaga) and is sold under the trade name of “Arenisca Ronda”. It is a light pink-whitish calcarenite deposited during the Late Tortonian to Late Messinian. We characterized their petrological and petrophysical properties by studying their rock fabrics, porous systems and mechanical properties. In order to obtain a complete vision of the behavior of their rock fabrics, we also carried out two decay tests, the salt crystallization and the freeze–thaw tests. We then measured the effects on the textures of the altered samples during and after the decay tests and we evaluated the changes in the porous system. By comparing the results between intact and altered samples, we found that Arenisca Ronda is less durable because it has a high quantity of expandable clays (smectites) and a high percentage of pores in the 0.1–1 μm range, in which the pressure produced by salt crystallization is strongest. In Molinaza Roja the decay agents caused significant sanding due to loss of cohesion between the clasts, especially during the salt crystallization test. In both stones, the anisotropies (oriented textures) have an important role in their hydric and dynamic behavior and also affect their mechanical properties (especially in the compression resistance). No changes in color were detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional mechanical properties of articular cartilage, such as compressive stiffness, have been demonstrated to be limited in their capacity to distinguish intact (visually normal) from degraded cartilage samples. In this paper, we explore the correlation between a new mechanical parameter, namely the reswelling of articular cartilage following unloading from a given compressive load, and the near infrared (NIR) spectrum. The capacity to distinguish mechanically intact from proteoglycan-depleted tissue relative to the "reswelling" characteristic was first established, and the result was subsequently correlated with the NIR spectral data of the respective tissue samples. To achieve this, normal intact and enzymatically degraded samples were subjected to both NIR probing and mechanical compression based on a load-unload-reswelling protocol. The parameter δ(r), characteristic of the osmotic "reswelling" of the matrix after unloading to a constant small load in the order of the osmotic pressure of cartilage, was obtained for the different sample types. Multivariate statistics was employed to determine the degree of correlation between δ(r) and the NIR absorption spectrum of relevant specimens using Partial Least Squared (PLS) regression. The results show a strong relationship (R(2)=95.89%, p<0.0001) between the spectral data and δ(r). This correlation of δ(r) with NIR spectral data suggests the potential for determining the reswelling characteristics non-destructively. It was also observed that δ(r) values bear a significant relationship with the cartilage matrix integrity, indicated by its proteoglycan content, and can therefore differentiate between normal and artificially degraded proteoglycan-depleted cartilage samples. It is therefore argued that the reswelling of cartilage, which is both biochemical (osmotic) and mechanical (hydrostatic pressure) in origin, could be a strong candidate for characterizing the tissue, especially in regions surrounding focal cartilage defects in joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses borehole geophysical log data of sonic velocity and electrical resistivity to estimate permeability in sandstones in the northern Galilee Basin, Queensland. The prior estimates of permeability are calculated according to the deterministic log–log linear empirical correlations between electrical resistivity and measured permeability. Both negative and positive relationships are influenced by the clay content. The prior estimates of permeability are updated in a Bayesian framework for three boreholes using both the cokriging (CK) method and a normal linear regression (NLR) approach to infer the likelihood function. The results show that the mean permeability estimated from the CK-based Bayesian method is in better agreement with the measured permeability when a fairly apparent linear relationship exists between the logarithm of permeability and sonic velocity. In contrast, the NLR-based Bayesian approach gives better estimates of permeability for boreholes where no linear relationship exists between logarithm permeability and sonic velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancient sandstones include important reservoirs for hydrocarbons (oil and gas), but, in many cases, their ability to serve as reservoirs is heavily constrained by the effects of carbonate cements on porosity and permeability. This study investigated the controls on distribution and abundance of carbonate cements within the Jurassic Plover Formation, Browse Basin, North West Shelf, Australia. Samples were analysed petrographically with point counting of 59 thin sections and mineralogically with x-ray diffraction from two wells within the Torosa Gas Field. Selected samples were also analysed for stable isotopes of O and C. Sandstones are classified into eleven groups. Most abundant are quartzarenites and then calcareous quartzarenites. Lithology ranged between sandstones consisting of mostly quartz with scant or no carbonate in the form of cement or allochems, to sandstones with as much as 40% carbonate. The major sources of carbonate cement in Torosa 1 and Torosa 4 sandstones were found to be early, shallow marine diagenetic processes (including cementation), followed by calcite cementation and recrystallisation of cements and allochems during redistribution by meteoric waters. Blocky and sparry calcite cements, indicative of meteoric environments on the basis of stable isotope values and palaeotemperature assessment, overprinted the initial shallow marine cement phase in all cases and meteoric cements are dominant. Torosa 4 was influenced more by marine settings than Torosa 1, and thus has the greater potential for calcite cement. The relatively low compaction of calcite-cemented sandstones and the stable isotope data suggest deep burial cementation was not a major factor. Insufficient volcanic rock fragments or authigenic clay content infers alteration of feldspars was not a major source of calcite. Very little feldspar is present, altered or otherwise. Hence, increased alkalinity from feldspar dissolution is not a contributing factor in cement formation. Increased alkalinity from bacterial sulphate reduction in organic–rich fine sediments may have driven limited cementation in some samples. The main definable and significant source of diagenetic marine calcite cement originated from original marine cements and the nearby dissolution of biogenic sources (allochems) at relatively shallow depths. Later diagenetic fluids emplaced minor dolomite, but this cement did not greatly affect the reservoir quality in the samples studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centres around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to establish an individualized, patient-specific diagnostic and therapeutic preclinical disease model for bone metastasis research. Tissue engineering of humanized bone within mice allowed the development of a humanized immune system in the host animal. This novel platform makes it possible to analyze the growth of human cancer cells in human bone in the presence of human immune cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent decreases in costs, and improvements in performance, of silicon array detectors open a range of potential applications of relevance to plant physiologists, associated with spectral analysis in the visible and short-wave near infra-red (far-red) spectrum. The performance characteristics of three commercially available ‘miniature’ spectrometers based on silicon array detectors operating in the 650–1050-nm spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, operated with a Larry detector) were compared with respect to the application of non-invasive prediction of sugar content of fruit using near infra-red spectroscopy (NIRS). The FICS–Larry gave the best wavelength resolution; however, the narrow slit and small pixel size of the charge-coupled device detector resulted in a very low sensitivity, and this instrumentation was not considered further. Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full width at half maximum of the 912 nm Hg peak, 13 and 2 nm for the MMS1 and S2000, respectively), but the large pixel height of the array used in the MMS1 gave it sensitivity comparable to the S2000. The signal-to-signal standard error ratio of spectra was greater by an order of magnitude with the MMS1, relative to the S2000, at both near saturation and low light levels. Calibrations were developed using reflectance spectra of filter paper soaked in range of concentrations (0–20% w/v) of sucrose, using a modified partial least squares procedure. Calibrations developed with the MMS1 were superior to those developed using the S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to noise ratio over wavelength resolution to calibration accuracy. The design of a bench top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar content of (intact) melon fruit is reported in terms of light source and angle between detector and light source, and optimisation of math treatment (derivative condition and smoothing function).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soluble solids content of intact fruit can be measured non-invasively by near infrared spectroscopy, allowing “sweetness” grading of individual fruit. However, little information is available in the literature with respect to the robustness of such calibrations. We developed calibrations based on a restricted wavelength range (700–1100 nm), suitable for use with low-cost silicon detector systems, using a stepwise multiple linear regression routine. Calibrations for total soluble solids (°Brix) in intact pineapple fruit were not transferable between summer and winter growing seasons. A combined calibration (data of three harvest dates) validated reasonably well against a population set drawn from all harvest dates (r2 = 0.72, SEP = 1.84 °Brix). Calibrations for Brix in melon were transferable between two of the three varieties examined. However, a lack of robustness of calibration was indicated by poor validation within populations of fruit harvested at different times. Further work is planned to investigate the robustness of calibration across varieties, growing districts and seasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolism of linalyl acetate by Pseudomonas incognita isolated by enrichment culture on the acyclic monoterpene alcohol linalool was studied. Biodegradation of linalyl acetate by this strain resulted in the formation of linalool, linalool- 8-carboxylic acid, oleuropeic acid, and A5-4-acetoxy-4-methyl hexenoic acid. Cells adapted to linalyl acetate metabolized linalyl acetate-8-aldehyde to linalool- 8-carboxylic acid, linalyl acetate-8-carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and geraniol-8-carboxylic acid. Resting cell suspensions previously grown with linalyl acetate oxidized linalyl acetate-8-aldehyde to linalyl acetate-8- carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and pyruvic acid. The crude cell-free extract (10,000 g of supernatant), obtained from the sonicate of linalyl acetate-grown cells, was shown to contain enzyme systems responsible for the formation of linalyl acetate-8-carboxylic acid and linalool-8-carboxylic acid from linalyl acetate. The same supernatant contained NAD-linked alcohol and aldehyde dehydrogenases involved in the formation of linalyl acetate-8-aldehyde and linalyl acetate-8-carboxylic acid, respectively. On the basis of various metabolites isolated from the culture medium, resting cell experiments, growth and manometric studies carried out with the isolated metabolites as well as related synthetic analogs, and the preliminary enzymatic studies performed with the cellfree extract, a probable pathway for the microbial degradation of linalyl acetate with the acetoxy group intact is suggested.