901 resultados para input shaping
Resumo:
This paper describes a method for limiting vibration in flexible systems by shaping the system inputs. Unlike most previous attempts at input shaping, this method does not require an extensive system model or lengthy numerical computation; only knowledge of the system natural frequency and damping ratio are required. The effectiveness of this method when there are errors in the system model is explored and quantified. An algorithm is presented which, given an upper bound on acceptable residual vibration amplitude, determines a shaping strategy that is insensitive to errors in the estimated natural frequency. A procedure for shaping inputs to systems with input constraints is outlined. The shaping method is evaluated by dynamic simulations and hardware experiments.
Resumo:
Residual vibrations degrade the performance of many systems. Due to the lightweight and flexible nature of space structures, controlling residual vibrations is especially difficult. Also, systems such as the Space Shuttle remote Manipulator System have frequencies that vary significantly based upon configuration and loading. Recently, a technique of minimizing vibrations in flexible structures by command input shaping was developed. This document presents research completed in developing a simple, closed- form method of calculating input shaping sequences for two-mode systems and a system to adapt the command input shaping technique to known changes in system frequency about the workspace. The new techniques were tested on a three-link, flexible manipulator.
Resumo:
Control of machines that exhibit flexibility becomes important when designers attempt to push the state of the art with faster, lighter machines. Three steps are necessary for the control of a flexible planet. First, a good model of the plant must exist. Second, a good controller must be designed. Third, inputs to the controller must be constructed using knowledge of the system dynamic response. There is a great deal of literature pertaining to modeling and control but little dealing with the shaping of system inputs. Chapter 2 examines two input shaping techniques based on frequency domain analysis. The first involves the use of the first deriviate of a gaussian exponential as a driving function template. The second, acasual filtering, involves removal of energy from the driving functions at the resonant frequencies of the system. Chapter 3 presents a linear programming technique for generating vibration-reducing driving functions for systems. Chapter 4 extends the results of the previous chapter by developing a direct solution to the new class of driving functions. A detailed analysis of the new technique is presented from five different perspectives and several extensions are presented. Chapter 5 verifies the theories of the previous two chapters with hardware experiments. Because the new technique resembles common signal filtering, chapter 6 compares the new approach to eleven standard filters. The new technique will be shown to result in less residual vibrations, have better robustness to system parameter uncertainty, and require less computation than other currently used shaping techniques.
Resumo:
The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.
Resumo:
Movimentazione, da parte di un braccio robotico, di un recipiente riempito con un liquido nello spazio tridimensionale. Sistema di trasferimento liquidi basato sul KUKA youBot, piattaforma open source per la ricerca scientifica. Braccio robotico a 5 gradi di libertà con struttura ortho-parallel e cinematica risolvibile in forma chiusa tramite l’applicazione di Pieper. Studio dei modi di vibrare dei liquidi e modellizzazione dei fenomeni ondosi tramite modello equivalente di tipo pendolo. Analisi delle metodologie di controllo di tipo feed-forward volte a sopprimere la risposta oscillatoria di un tipico sistema vibratorio. Filtraggio delle traiettorie di riferimento da imporre allo youBot, in modo tale da sopprimere le vibrazioni in uscita della massa d’acqua movimentata. Analisi e comparazione delle metodologie di input shaping e filtro esponenziale. Validazione sperimentale delle metodologie proposte implementandole sul manipolatore youBot. Misura dell’entità del moto ondoso basata su dati acquisiti tramite camera RGBD ASUS Xtion PRO LIVE. Algoritmo di visione per l’elaborazione offline dei dati acquisiti, con output l’andamento dell’angolo di oscillazione del piano interpolante la superficie del liquido movimentato.
Resumo:
This paper presents a comparative study of complex single-bit and multi-bit sigma-delta modulators that are capable of providing concurrent multiple-band noise-shaping for multi-tone narrow-band input signals. The concepts applied for the three design methodologies are based on the noise transfer functions of complex comb, complex slink and complex multi-notch filters.
Resumo:
This study investigates whether mothers who have children with cochlear implants fine-tune their own vocabulary and sentence complexity to that of their child. Whether and how fine-tuning leads to faster growth in these language skills is explored.
Resumo:
Based on a modified coupled wave theory, the pulse shaping properties of volume holographic gratings (VHGs) in anisotropic media VHGs are studied systematically. Taking photorefractive LiNbO3 crystals as an example, the combined effect that the grating parameters, the dispersion and optical anisotropy of the crystal, the pulse width, and the polarization state of the input ultrashort pulsed beam (UPB) have on the pulse shaping properties are considered when the input UPB with arbitrary polarization state propagates through the VHG. Under the combined effect, the diffraction bandwidth, pulse profiles of the diffracted and transmitted pulsed beams, and the total diffraction efficiency are shown. The studies indicate that the properties of the shaping of the o and e components of the input UPB in the crystal are greatly different; this difference can be used for pulse shaping applications. (c) 2006 Optical Society of America.
Resumo:
Future NASA plans to launch large space strucutres solicit the need for effective vibration control schemes which can solve the unique problems associated with unwanted residual vibration in flexible spacecraft. In this work, a unique method of input command shaping called impulse shaping is examined. A theoretical background is presented along with some insight into the methdos of calculating multiple mode sequences. The Middeck Active Control Experiment (MACE) is then described as the testbed for hardware experiments. These results are shown and some of the difficulties of dealing with nonlinearities are discussed. The paper is concluded with some conclusions about calculating and implementing impulse shaping in complex nonlinear systems.
Resumo:
The proliferation of designated areas following the implementation of Natura 2000 in Greece has initiated changes in the protected area design and conservation policy making aiming at delivering action for biodiversity and integrative planning on a wider landscape. Following the sustainability concept, an integrative approach cannot realistically take place simply by extending the protected area and designations. The paper addresses public involvement and inter-sectoral coordination as major procedural elements of integrative management and evaluates the nature and strength of their negative or positive influences on the fulfillment of an integrative vision of nature conservation. A review of the history of protected areas and administration developments in Greece provide useful input in the research. The analysis has shown that the selected network of Natura 2000 sites has been superimposed upon the existing system and resulted in duplication of administrative effort and related legislation. As a result the overall picture of protected areas in the country appears complex, confusing and fragmented. Major failures to integrated conservation perspective can be traced to structural causes rooted in politico-economic power structures of mainstream policy and in a rather limited political commitment to conservation. It is concluded that greater realisation. of integrated conservation in Greece necessitates policy reforms related mainly to sectoral legal frameworks to promote environmentalism as well as an increased effort by the managing authorities to facilitate a broader framework of public dialogue and give local communities incentives to sustainably benefit from protected areas. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A method of unpolarized laser pulses shaping is reported. The basis of the method is the use of an hybrid optical bistable device with nematic liquid-crystals, similar to the one previously reported by us. A sample of the input light constrols, by an asymmetrical electronic comparator, a 1 x 2 electro-optical total switch. The output pulses are reshaped and maintain the same polarization properties as the input light. From triangular input light signals, symmetriacl and asymmetrical output pulses have been obtained. The minimum pulse width achieved was 0.1 msec. A representation of the output versus input light signals gives an hysteresys cycle in the asymmetrical case.
Resumo:
We propose an all-fiber method for the generation of ultrafast shaped pulse train bursts from a single pulse based on Fourier Series Developments (FDSs). The implementation of the FSD based filter only requires the use of a very simple non apodized Superimposed Fiber Bragg Grating (S-FBG) for the generation of the Shaped Output Pulse Train Burst (SOPTB). In this approach, the shape, the period and the temporal length of the generated SOPTB have no dependency on the input pulse rate.
Resumo:
The heart is a non-regenerating organ that gradually suffers a loss of cardiac cells and functionality. Given the scarcity of organ donors and complications in existing medical implantation solutions, it is desired to engineer a three-dimensional architecture to successfully control the cardiac cells in vitro and yield true myocardial structures similar to native heart. This thesis investigates the synthesis of a biocompatible gelatin methacrylate hydrogel to promote growth of cardiac cells using biotechnology methodology: surface acoustic waves, to create cell sheets. Firstly, the synthesis of a photo-crosslinkable gelatin methacrylate (GelMA) hydrogel was investigated with different degree of methacrylation concentration. The porous matrix of the hydrogel should be biocompatible, allow cell-cell interaction and promote cell adhesion for growth through the porous network of matrix. The rheological properties, such as polymer concentration, ultraviolet exposure time, viscosity, elasticity and swelling characteristics of the hydrogel were investigated. In tissue engineering hydrogels have been used for embedding cells to mimic native microenvironments while controlling the mechanical properties. Gelatin methacrylate hydrogels have the advantage of allowing such control of mechanical properties in addition to easy compatibility with Lab-on-a-chip methodologies. Secondly in this thesis, standing surface acoustic waves were used to control the degree of movement of cells in the hydrogel and produce three-dimensional engineered scaffolds to investigate in-vitro studies of cardiac muscle electrophysiology and cardiac tissue engineering therapies for myocardial infarction. The acoustic waves were characterized on a piezoelectric substrate, lithium niobate that was micro-fabricated with slanted-finger interdigitated transducers for to generate waves at multiple wavelengths. This characterization successfully created three-dimensional micro-patterning of cells in the constructs through means of one- and two-dimensional non-invasive forces. The micro-patterning was controlled by tuning different input frequencies that allowed manipulation of the cells spatially without any pre- treatment of cells, hydrogel or substrate. This resulted in a synchronous heartbeat being produced in the hydrogel construct. To complement these mechanical forces, work in dielectrophoresis was conducted centred on a method to pattern micro-particles. Although manipulation of particles were shown, difficulties were encountered concerning the close proximity of particles and hydrogel to the microfabricated electrode arrays, dependence on conductivity of hydrogel and difficult manoeuvrability of scaffold from the surface of electrodes precluded measurements on cardiac cells. In addition, COMSOL Multiphysics software was used to investigate the mechanical and electrical forces theoretically acting on the cells. Thirdly, in this thesis the cardiac electrophysiology was investigated using immunostaining techniques to visualize the growth of sarcomeres and gap junctions that promote cell-cell interaction and excitation-contraction of heart muscles. The physiological response of beating of co-cultured cardiomyocytes and cardiac fibroblasts was observed in a synchronous and simultaneous manner closely mimicking the native cardiac impulses. Further investigations were carried out by mechanically stimulating the cells in the three-dimensional hydrogel using standing surface acoustic waves and comparing with traditional two-dimensional flat surface coated with fibronectin. The electrophysiological responses of the cells under the effect of the mechanical stimulations yielded a higher magnitude of contractility, action potential and calcium transient.
Resumo:
This paper reports on the experiences of an extracurricular program in English language learning (ELL) that was implemented in an institute of technology in the hinterland of the People's Republic of China (PRC). Following the guidelines set out in an impact study of the reform of curriculum change in Hong Kong (Adamson & Morris, 2000), this study takes account of the context of the particular socio-cultural and political environment in which the research program takes place. Three distinct phases emerged in the career of the extracurricular program - the establishment of the program; successful implementation; and the decline. The study identifies three key factors that shaped these phases: teacher motivation; student motivation and its various influences; and available resources (including collegial and administrative support). The findings suggest that of the key factors impacting on the ELL extracurriculum, student motivation was the most influential.