986 resultados para informative counting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many algorithms have been introduced to deterministically authenticate Radio Frequency Identification (RFID) tags, while little work has been done to address scalability issue in batch authentications. Deterministic approaches verify tags one by one, and the communication overhead and time cost grow linearly with increasing size of tags. We design a fast and scalable counterfeits estimation scheme, INformative Counting (INC), which achieves sublinear authentication time and communication cost in batch verifications. The key novelty of INC builds on an FM-Sketch variant authentication synopsis that can capture key counting information using only sublinear space. With the help of this well-designed data structure, INC is able to provide authentication results with accurate estimates of the number of counterfeiting tags and genuine tags, while previous batch authentication methods merely provide 0/1 results indicating the existence of counterfeits. We conduct detailed theoretical analysis and extensive experiments to examine this design and the results show that INC significantly outperforms previous work in terms of effectiveness and efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an innovative topic segmentation system based on a new informative similarity measure that takes into account word co-occurrence in order to avoid the accessibility to existing linguistic resources such as electronic dictionaries or lexico-semantic databases such as thesauri or ontology. Topic segmentation is the task of breaking documents into topically coherent multi-paragraph subparts. Topic segmentation has extensively been used in information retrieval and text summarization. In particular, our architecture proposes a language-independent topic segmentation system that solves three main problems evidenced by previous research: systems based uniquely on lexical repetition that show reliability problems, systems based on lexical cohesion using existing linguistic resources that are usually available only for dominating languages and as a consequence do not apply to less favored languages and finally systems that need previously existing harvesting training data. For that purpose, we only use statistics on words and sequences of words based on a set of texts. This solution provides a flexible solution that may narrow the gap between dominating languages and less favored languages thus allowing equivalent access to information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated crowd counting allows excessive crowding to be detected immediately, without the need for constant human surveillance. Current crowd counting systems are location specific, and for these systems to function properly they must be trained on a large amount of data specific to the target location. As such, configuring multiple systems to use is a tedious and time consuming exercise. We propose a scene invariant crowd counting system which can easily be deployed at a different location to where it was trained. This is achieved using a global scaling factor to relate crowd sizes from one scene to another. We demonstrate that a crowd counting system trained at one viewpoint can achieve a correct classification rate of 90% at a different viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the links between various approaches to managing equity and diversity and their effectiveness in changing the measures of inclusivity of women in organisations as a means of auditing and mapping managing diversity outcomes in Australia. The authors argue that managing diversity is more than changing systems and counting numbers it is also about managing the substantive culture change required in order to achieve inclusivity particularly intercultural inclusivity. Research in one sector of the education industry that investigated the competency skills required for culture change is offered as a model or guide for understanding and reflecting upon intercultural competency and its sequential development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable public, political and professional debate about the need for additional hospital beds in Australia. However, there is no clarity in regard to the definition, meaning and significance of hospital bed counts. Relative to population, there has been a total decline in bed availability in Australia over the past 15 years of 14.6% (22.9% for public hospital beds). This decline is partly offset by reductions in length of stay and changes to models of care; however, the net effect is increased bed occupancy which has in turn resulted in system-wide congestion. Future bed capability needs to be better planned to meet growing demands while at the same time continuing trends for more efficient use. Future planning should be based in part on weighted bed capability matched to need.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway signaling facilitates two main functions, namely, train detection and train control, in order to maintain safe separations among the trains. Track circuits are the most commonly used train detection means with the simple open/close circuit principles; and subsequent adoption of axle counters further allows the detection of trains under adverse track conditions. However, with electrification and power electronics traction drive systems, aggravated by the electromagnetic interference in the vicinity of the signaling system, railway engineers often find unstable or even faulty operations of track circuits and axle counting systems, which inevitably jeopardizes the safe operation of trains. A new means of train detection, which is completely free from electromagnetic interference, is therefore required for the modern railway signaling system. This paper presents a novel optical fiber sensor signaling system. The sensor operation, field setup, axle detection solution set, and test results of an installation in a trial system on a busy suburban railway line are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the Kinaesthetic Fusion Effect (KFE) first described by Craske and Kenny in 1981. The current study did not replicate these findings. Participants did not perceive any reduction in the sagittal separation of a button pressed by the index finger of one arm and a probe touching the other, following repeated exposure to the tactile stimuli present on both unseen arms. This study’s failure to replicate the widely-cited KFE as described by Craske et al. (1984) suggests that it may be contingent on several aspects of visual information, especially the availability of a specific visual reference, the role of instructions regarding gaze direction, and the potential use of a line of sight strategy when referring felt positions to an interposed surface. In addition, a foreshortening effect was found; this may result from a line-of-sight judgment and represent a feature of the reporting method used. The transformed line of sight data were regressed against the participant reported values, resulting in a slope of 1.14 (right arm) and 1.11 (left arm), and r > 0.997 for each. The study also provides additional evidence that mis-perceptions of the mediolateral position of the limbs specifically their separation and consistent with notions of Gestalt grouping, is somewhat labile and can be influenced by active motions causing touch of one limb by the other. Finally, this research will benefit future studies that require participants to report the perceived locations of the unseen limbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a scene invariant crowd counting algorithm that uses local features to monitor crowd size. Unlike previous algorithms that require each camera to be trained separately, the proposed method uses camera calibration to scale between viewpoints, allowing a system to be trained and tested on different scenes. A pre-trained system could therefore be used as a turn-key solution for crowd counting across a wide range of environments. The use of local features allows the proposed algorithm to calculate local occupancy statistics, and Gaussian process regression is used to scale to conditions which are unseen in the training data, also providing confidence intervals for the crowd size estimate. A new crowd counting database is introduced to the computer vision community to enable a wider evaluation over multiple scenes, and the proposed algorithm is tested on seven datasets to demonstrate scene invariance and high accuracy. To the authors' knowledge this is the first system of its kind due to its ability to scale between different scenes and viewpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early-number is a rich fabric of interconnected ideas that is often misunderstood and thus taught in ways that do not lead to rich understanding. In this presentation, a visual language is used to describe the organisation of this domain of knowledge. This visual language is based upon Piaget’s notion of reflective abstraction (Dubinsky, 1991; Piaget, 1977/2001), and thus captures the epistemological associations that link the problems, concepts and representations of the domain. The constructs of this visual language are introduced and then applied to the early-number domain. The introduction to this visual language may prompt reflection upon its suitability and significance to the description of other domains of knowledge. Through such a process of analysis and description, the visual language may serve as a scaffold for enhancing pedagogical content knowledge and thus ultimately improve learning outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In public places, crowd size may be an indicator of congestion, delay, instability, or of abnormal events, such as a fight, riot or emergency. Crowd related information can also provide important business intelligence such as the distribution of people throughout spaces, throughput rates, and local densities. A major drawback of many crowd counting approaches is their reliance on large numbers of holistic features, training data requirements of hundreds or thousands of frames per camera, and that each camera must be trained separately. This makes deployment in large multi-camera environments such as shopping centres very costly and difficult. In this chapter, we present a novel scene-invariant crowd counting algorithm that uses local features to monitor crowd size. The use of local features allows the proposed algorithm to calculate local occupancy statistics, scale to conditions which are unseen in the training data, and be trained on significantly less data. Scene invariance is achieved through the use of camera calibration, allowing the system to be trained on one or more viewpoints and then deployed on any number of new cameras for testing without further training. A pre-trained system could then be used as a ‘turn-key’ solution for crowd counting across a wide range of environments, eliminating many of the costly barriers to deployment which currently exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for automatic terrain classification, using a cheap monocular camera in conjunction with a robot’s stall sensor. A first step is to have the robot generate a training set of labelled images. Several techniques are then evaluated for preprocessing the images, reducing their dimensionality, and building a classifier. Finally, the classifier is implemented and used online by an indoor robot. Results are presented, demonstrating an increased level of autonomy.