836 resultados para influence in mechanical properties
Resumo:
Tissue engineering arises from the need to regenerate organs and tissues, requiring the development of scaffolds, which can provide an optimum environment for tissue growth. In this work, chitosan with different molecular weights was used to develop biodegradable 3D inverted colloidal crystals (ICC) structures for bone regeneration, exhibiting uniform pore size and interconnected network. Moreover, in vitro tests were conducted by studying the influence of the molecular weight in the degradation kinetics and mechanical properties. The production of ICC included four major stages: fabrication of microspheres; assembly into a cohesive structure, polymeric solution infiltration and microsphere removal. Chitosan’s degree of deacetylation was determined by infrared spectroscopy and molecular weight was obtained via capillary viscometry. In order to understand the effect of the molecular weight in ICC structures, the mass loss and mechanical properties were analyzed after degradation with lysozyme. Structure morphology observation before and after degradation was performed by scanning electron microscopy. Cellular adhesion and proliferation tests were carried out to evaluate ICC in vitro response. Overall, medium molecular weight ICC revealed the best balance in terms of mechanical properties, degradation rate, morphology and biological behaviour.
Resumo:
The purpose of this research is to characterise the mechanical properties of multicrystalline silicon for photovoltaic applications that was crystallised from silicon feedstock with a high content of several types of impurities. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within a multicrystalline silicon block to quantify the effect of impurity segregation on these mechanical properties. The microstructure and fracture surfaces of the samples was exhaustively analysed with a scanning electron microscope in order to correlate the values of mechanical properties with material microstructure. Fracture stresses values were treated statistically via the Weibull statistics. The results of this research show that metals segregate to the top of the block, produce moderate microcracking and introduce high thermal stresses. Silicon oxide is produced at the bottom part of the silicon block, and its presence significantly reduces the mechanical strength and fracture toughness of multicrystalline silicon due to both thermal and elastic mismatch between silicon and the silicon oxide inclusions. Silicon carbide inclusions from the upper parts of the block increase the fracture toughness and elastic modulus of multicrystalline silicon. Additionally, the mechanical strength of multicrystalline silicon can increase when the radius of the silicon carbide inclusions is smaller than ~10 µm. The most damaging type of impurity inclusion for the multicrystalline silicon block studied in this work was amorphous silicon oxide. The oriented precipitation of silicon oxide at grain and twin boundaries eases the formation of radial cracks between inclusions and decreases significatively the mechanical strength of multicrystalline silicon. The second most influencing type of impurity inclusions were metals like aluminium and copper, that cause spontaneous microcracking in their surroundings after the crystallisation process, therefore reducing the mechanical response of multicrystalline silicon. Therefore, solar cell producers should pay attention to the content of metals and oxygen within the silicon feedstock in order to produce solar cells with reliable mechanical properties.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Assessment of laser shock processing effects on mechanical resistance of thin dissimilar laser welded joints
Resumo:
Rapid manufacturing is an advanced manufacturing technology based on layer-by-layer manufacturing to produce a part. This paper presents experimental work carried out to investigate the effects of scan speed, layer thickness, and building direction on the following part features: dimensional error, surface roughness, and mechanical properties for DMLS with DS H20 powder and SLM with CL 20 powder (1.4404/AISI 316L). Findings were evaluated using ANOVA analysis. According to the experimental results, build direction has a significant effect on part quality, in terms of dimensional error and surface roughness. For the SLM process, the build direction has no influence on mechanical properties. Results of this research support industry estimating part quality and mechanical properties before the production of parts with additive manufacturing, using iron-based powders
Resumo:
El principal objetivo de este estudio es evaluar la influencia de las fendas de secado en las propiedades mecánicas de vigas de madera. Para esto, se utilizan 40 vigas de Pino silvestre (Pinus sylvestris L) de 4200 mm de longitud y 150x200 mm de sección que fueron ensayadas según norma EN 408. Las fendas se registran detalladamente atendiendo a su longitud y posición en cada cara de la viga, y midiendo el espesor y la profundidad cada 100mm a lo largo de la viga. Solo el 10% de la muestra es rechazada por las fendas, según los criterios establecidos por la norma española de clasificación visual UNE 56544. Para evaluar la influencia de las fendas en las propiedades mecánicas, se usan tres parámetros globales basados en el área, el volumen o la profundad de la fenda, y dos locales basados en la profundidad máxima y la profundidad en la zona de rotura. Además se determina la densidad de las piezas. Estos parámetros se comparan con las propiedades mecánicas (tensión de rotura, módulo de elasticidad y energía de rotura) y se encuentra escasa relación entre ellos. Las mejores correlaciones se encuentran entre los parámetros relacionados con la profundidad de las fendas, tanto con el módulo de elasticidad como con la tensión de rotura. The aim of this study is the evaluation of the influence of drying fissures on the mechanical properties of timber beams. For that purpose, 40 sawn timber pieces of Scots pine (Pinus sylvestris L.) with 150x200 mm in cross-section and 4200 mm in length have been tested according to EN 408, obtaining MOR and MOE. The fissures were registered in detail measuring their length and position in each face of the beam, and the thickness and depth every 100 mm in length. Only 10 % of the pieces were rejected because fissures, according to UNE 56544 Spanish visual grading standard. To evaluate the influence of fissures in mechanical properties three global parameters: Fissures Area Ratio or ratio between the area occupied by fissures and the total area in the neutral axis plane of the beam; Fissures Volume Ratio or ratio between volume of fissures and the total volume of the beam; Fissures Average Depth and two local parameters were used: Fissures Maximum Depth in the beam, and Fissures Depth in the broken zone of the beam. Also the density of the beams was registered. These parameters were compared with mechanical properties (tensile strength, elasticity modulus, and rupture energy) and the relationship between them had not been founded. The best relationship was founded between the elasticity modulus y the tensile strength with the parameters which included the depth of the fissures.
Resumo:
Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface.
Resumo:
Se ha estudiado el acero inoxidable pulvimetalúrgico AISI 430L, comparando la sinterización en dos atmósferas diferentes; en vacío, y en una atmósfera que contiene nitrógeno. Se ha desarrollado un tratamiento térmico con objeto de incrementar las propiedades mecánicas, mediante la modificación microestructural de los nitruros complejos de hierro y cromo precipitados durante la etapa de sinterización. Se han evaluado las propiedades físicas y a la vez se ha realizado un análisis microestructural con el fin de relacionar la microestructura con el incremento en las propiedades mecánicas. Influence of sintering atmosphere on the mechanical properties of steel P / M AISI 430L. It has studied the stainless steel powder metallurgy AISI 430L. It has compared the sintering in two different atmospheres; in vacuum, and in an atmosphere containing nitrogen. It has developed a heat treatment with the aim of improving the mechanical properties. This has been done through microstructural modification of complex nitrides of iron and chromium precipitates during the phase of sintering. Physical properties have been evaluated and are been performing a microstructural analysis for microstructure related to the increase in mechanical properties.
Resumo:
High strength and high performance concrete are being widely used all over the world. Most of the applications of high strength concrete have been found in high rise buildings, long span bridges etc. The potential of rice husk ash as a cement replacement material is well established .Earlier researches showed an improvement in mechanical properties of high strength concrete with finely ground RHA as a partial cement replacement material. A review of literature urges the need for optimizing the replacement level of cement with RHA for improved mechanical properties at optimum water binder ratio. This paper discusses the mechanical properties of RHA- High strength concrete at optimized conditions
Resumo:
The effect of accelerated weathering on the visual appearance and on mechanical properties of high impact polystyrene (HIPS) as well as HIPS reinforced with mercerized and bleached sugarcane bagasse fibers composites are investigated. After accelerated weathering period of 900 h, under UV-B radiation and moisture regular cycles, changes in mechanical properties are investigated by tensile tests. Materials fracture surfaces are investigated by scanning electron microscopy (SEM). The study showed that the exposure time was sufficient to change the visual appearance of HIPS as the composites. From this study, it was observed that composites reinforced with bleached fibers are less susceptible to accelerated weathering exposure than composites reinforced with mercerized fibers, which is explained by the higher amount of lignin present in mercerized fibers. (C) 2010 Published by Elsevier Ltd. Selection and peer-review under responsibility of [name organizer]
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.