916 resultados para independent random variables with a commondensity
Resumo:
A new interpolation technique has been developed for replacing missing samples in a sampled waveform drawn from a stationary stochastic process, given the power spectrum for the process. The method works with a finite block of data and is based on the assumption that components of the block DFT are Gaussian zero-mean independent random variables with variance proportional to the power spectrum at each frequency value. These assumptions make the interpolator particularly suitable for signals with a sharply-defined harmonic structure, such as audio waveforms recorded from music or voiced speech. Some results are presented and comparisons are made with existing techniques.
Resumo:
In this work, the paper of Campos and Dorea [3] was detailed. In that article a Kernel Estimator was applied to a sequence of random variables with general state space, which were independent and identicaly distributed. In chapter 2, the estimator´s properties such as asymptotic unbiasedness, consistency in quadratic mean, strong consistency and asymptotic normality were verified. In chapter 3, using R software, numerical experiments were developed in order to give a visual idea of the estimate process
Resumo:
Suppose that one observes pairs (x1,Y1), (x2,Y2), ..., (xn,Yn), where x1 < x2 < ... < xn are fixed numbers while Y1, Y2, ..., Yn are independent random variables with unknown distributions. The only assumption is that Median(Yi) = f(xi) for some unknown convex or concave function f. We present a confidence band for this regression function f using suitable multiscale sign tests. While the exact computation of this band seems to require O(n4) steps, good approximations can be obtained in O(n2) steps. In addition the confidence band is shown to have desirable asymptotic properties as the sample size n tends to infinity.
Resumo:
Consider L independent and identically distributed exponential random variables (r.vs) X-1, X-2 ,..., X-L and positive scalars b(1), b(2) ,..., b(L). In this letter, we present the probability density function (pdf), cumulative distribution function and the Laplace transform of the pdf of the composite r.v Z = (Sigma(L)(j=1) X-j)(2) / (Sigma(L)(j=1) b(j)X(j)). We show that the r.v Z appears in various communication systems such as i) maximal ratio combining of signals received over multiple channels with mismatched noise variances, ii)M-ary phase-shift keying with spatial diversity and imperfect channel estimation, and iii) coded multi-carrier code-division multiple access reception affected by an unknown narrow-band interference, and the statistics of the r.v Z derived here enable us to carry out the performance analysis of such systems in closed-form.
Resumo:
We consider a buying-selling problem when two stops of a sequence of independent random variables are required. An optimal stopping rule and the value of a game are obtained.
Resumo:
* Research supported by NATO GRANT CRG 900 798 and by Humboldt Award for U.S. Scientists.
Resumo:
The present study gave emphasis on characterizing continuous probability distributions and its weighted versions in univariate set up. Therefore a possible work in this direction is to study the properties of weighted distributions for truncated random variables in discrete set up. The problem of extending the measures into higher dimensions as well as its weighted versions is yet to be examined. As the present study focused attention to length-biased models, the problem of studying the properties of weighted models with various other weight functions and their functional relationships is yet to be examined.
Resumo:
In the article the author considers and analyzes operations and functions on risk variables. She takes into account the following variables: the sum of risk variables, its product, multiplication by a constant, division, maximum, minimum and median of a sum of random variables. She receives the formulas for probability distribution and basic distribution parameters. She conducts the analysis for dependent and independent random variables. She propose the examples of the situations in the economy and production management of risk modelled by this operations. The analysis is conducted with the way of mathematical proving. Some of the formulas presented are taken from the literature but others are the permanent results of the author.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Changepoint regression models have originally been developed in connection with applications in quality control, where a change from the in-control to the out-of-control state has to be detected based on the avaliable random observations. Up to now various changepoint models have been suggested for differents applications like reliability, econometrics or medicine. In many practical situations the covariate cannot be measured precisely and an alternative model are the errors in variable regression models. In this paper we study the regression model with errors in variables with changepoint from a Bayesian approach. From the simulation study we found that the proposed procedure produces estimates suitable for the changepoint and all other model parameters.
Resumo:
In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is presented. Processing was performed without a priori knowledge of the chemical composition of the two food materials. The aim was to extract the source signals of the different chemical components from the initial data set and to use them in order to determine the distribution of peanut traces in the hyperspectral images. To determine the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This method is based on the repeated calculation of several models using an increasing number of independent components after randomly segmenting the matrix data into two blocks and then calculating the correlations between the signals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single synthetic signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and the wheat flours in a real multi-use industrial environment. Furthermore, feature extraction methods (connected components labelling algorithm followed by flood fill method to extract object contours) were applied in order to target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces was thus obtained
Resumo:
2000 Mathematics Subject Classification: 60J80, 60G70.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
Purpose: Flat-detector, cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. Methods: The rich sources of prior information in IGRT are incorporated into a hidden Markov random field (MRF) model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk (OAR). The voxel labels are estimated using the iterated conditional modes (ICM) algorithm. Results: The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom (CIRS, Inc. model 062). The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. Conclusions: By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.